

Published by:

Global Academy Publishing House

Cover & Design: Global Academy Publishing House

ISBN Number: 978-625-6276-27-7

Publishing Date: June 13, 2025

All rights of this book belong to Global Academy Publishing

House.

No part of this publication may be reproduced, stored, retrieved

system, ortransmitted, in any form or by any means, without the

written permission of the Global Academy Publishing House.

Any person who does any unauthorized act in relation to this

publication may be liable for criminal prosecution and civil

claims for damages. All chapters published in this book have been

double blind peer reviewed.

©Copyright June, 2025

Certificate No: 64419

Adress: Konutkent 2955. St. Oyak 1 Number: 8/6 Cankaya /

Ankara / TURKIYE

The individual essays remain the intellectual properties of the

contributors.

e-mail: globalyayinlari@gmail.com

https://www.globalacademy.com.tr/

mailto:globalyayinlari@gmail.com
https://www.globalacademy.com.tr/

1

Algorithms against Fraud and

Corruption - with practical

application

Phd. Vicente Humberto

Monteverde

2

Dedication

This book is dedicated to humanity, to fight against
fraud and corruption.

Acknowledgments

To Almighty God.

To my Parents, Grandparents, and my ancestors, I
am a part of them.

To my beloved son Ulysses, the reason for my life.

To Dr. Suhail Montaño Sánchez and Dr. Rosalia
Susana Lastra Barrios, I thank them for their

collaboration on this book.

To Mariana E. Quaizel, my dear cousin, a
collaborator on this book.

To my teachers in Data Science, Cristian Darío
Ortega Yubro and Gustavo Raul Machin Urbay,

without their teaching, it would have been impossible
to write this book.

To Luis del Prado, a great friend.

To my Professors, Teachers, and Students.

To Maria Mabel Mazza, the love.

3

Index

Chapter 01. Abstract

Chapter 02. Introduction

Chapter 03. The of Fraud and Corruption

Chapter 04. Psychological and Sociological

Analysis of Fraud and Corruption

Chapter 05. Introduction to Data Analysis Tools.

Chapter 06. Introduction to Algorithms and

Artificial Intelligence.

Chapter 07. Methodology

Chapter 08. Algorithms against fraud.

Chapter 09. Algorithms for accountability.

Chapter 10. Algorithms against corruption.

Chapter 11. Conclusion

Chapter 12. Glossary of Terms

Bibliography

4

Chapter 01. Abstract

This book explores the practical application of
advanced algorithms to detect, prevent, and
mitigate fraud and corruption in real-world
scenarios. The goal is to bridge the gap between
algorithmic theory and its practical impact.

Methodology

The article reviews existing algorithmic techniques,
such as machine learning and anomaly detection, as
applied in this field. It presents and analyzes the
results of three specific algorithms that have proven
efficient in detecting fraud and corruption in real-life
cases.

Key Results

The implementation of these algorithms leads to:

• Reduced financial losses.
• Increased detection rates of illicit activities.
• Improved efficiency in oversight and

enforcement.

Ultimately, these tools contribute to greater integrity
and accountability across various sectors.

Practical and Social Implications

The primary practical implication is that these
algorithms directly enhance the efficiency and
effectiveness of detecting and preventing fraud and
corruption. They offer concrete tools for organizations
to safeguard resources and uphold integrity, moving
beyond mere theory.

5

However, their application carries significant social
implications. While they promise greater
transparency and efficiency, it's crucial to consider
the ethical dilemmas, potential biases, and privacy
concerns that arise when deploying them in the real
world.

Originality

This work is original, as no other research publishing
these specific algorithms and their practical
application was available at the time of writing this
article. No limitations were identified concerning the
models presented.

KEYWORDS: Algorithms, Fraud Analytics,

Corruption Detection,

JEL, classification : C45, C53, D73, G28, K42

6

Chapter 02. Introduction.

In the intricate and often shadowy intersection of
unchecked ambition and questionable ethics, fraud
and corruption persist as scourges that erode public
trust, divert crucial resources, and undermine the very
fabric of our societies and institutions. These illicit
practices, ranging from subtle embezzlement to
complex networks of bribery and misappropriation,
adopt diverse and sophisticated forms, presenting a
constant challenge for their detection and prevention.

Traditionally, the fight against fraud and corruption1
has largely relied on human intuition, retrospective
audits, and forensic investigations. While these
methods remain valuable, the increasing complexity
of financial operations and the vast amount of data
generated in the modern world demand a more
powerful and proactive approach. It is in this context
that algorithms emerge as indispensable allies,
offering an unprecedented capacity to analyze
patterns, identify anomalies, and predict suspicious
behaviors in real time.

The present article distinguishes itself by its emphasis
on the practical application of these tools. We
develop the algorithms, including their code, through
the creation of datasets and the algorithm's
application code.

Through three concrete examples, illustrative case
studies, and a detailed index of potential
implementations, we will demonstrate how algorithmic
concepts translate into tangible and effective tools to
combat these scourges. From detecting fraudulent

1 Aidt, Toke S. "Corruption and Economic Growth: A Review of the Evidence."

European Journal of Political Economy, Vol. 20, No. 2 (June 2004), pp. 401-424.

7

credit card transactions to identifying irregularities in
public tenders and tracking suspicious financial flows,
the transformative potential of algorithms in building a
more transparent and just world will be unveiled. As
an interactive web application presented in the last
chapter will show, our approach is not merely
theoretical but eminently functional and
demonstrative.

This work invites you to discover how the power of
data analysis and artificial intelligence are
becoming the vanguard in the battle against fraud and
corruption, offering new hope for strengthening
integrity and accountability in all areas.

2.Theory of fraud and corruption.

 2.1 Definition and Types of Fraud

Evidence of the potential for implementing AI-based

algorithms to more deeply and accurately understand

the circumstances related to criminal acts in general

is still developing. However, we must always account

for some degree of limitation derived from the

unpredictable nature of the human mind. To define our

object of study, let's focus on the following types of

fraud: a) bribery, nepotism/favoritism, b) the use of

public resources for personal or partisan gain, and c)

the abuse of power used to influence political or

administrative decision-makers. The importance of

focusing on these types lies in their potential to affect

everything from the personal economy to

macroeconomics. These are operations that interact

with society, including practices like money

laundering, tax evasion, and even the creation of

8

monopolies and agreements to impose anti-

competitive practices.

2.2 Manifestations of Corruption

Once it's clear that a nuanced difference exists—

remember, fraud is a qualified offense characterized

by deceit or scam as a specific form of corruption,

which refers to any questionable practice whether by

omission or abuse of power—let's detail its

manifestations. Bribery involves the payment of

money or goods in exchange for favors or influence,

ranging from obtaining personal or group benefits to

avoiding sanctions. Nepotism is defined by the

exercise of favoritism towards family or friends in

selecting or assigning personnel. Clientelism refers to

the exchange of favors or benefits for loyalty or

political support, possibly related to influence

peddling. Embezzlement of funds implies the

improper use of public or private funds, generally in

public procurement, leading to the irregular use of

contractor or supplier selection procedures. Finally,

among the most damaging to public morality, is the

manipulation of justice, essentially through undue

access to judges, prosecutors, or lawyers.

 2.3 Economic and Social Impact of Fraud and

Corruption

The analysis of economic-administrative crimes does

not yet lead in the use of algorithms, as it still suffers

from informational limitations regarding the

controversial causes. This explains why, to date, its

study is restricted to effects and simple perception

measurements, making it essential to transform the

9

analytical paradigm towards studying the essence of

the human being. The good news is that, regarding

technical restrictions, the solution is on its way through

the action of AI. AI overcomes previous impossibilities

of connecting not only real data from individuals and

their interactions but also capturing previously hidden

circumstances implied by each type of crime, as well

as addressing interpretive needs from different

viewpoints and disciplinary approaches. The main

ones are those concerning frauds that affect

economics, politics, sociology, and psychology, using

quantitative, qualitative, mixed methods, and case

studies, in addition to analyzing both causes and dire

consequences.

Economic Impact

Financial fraud represents a significant threat to the

global economy. According to a NASDAQ report, in

2023, it was estimated that over $3.1 trillion circulated

through the global financial system in illicit funds,

comprising $485.6 billion in losses from scams and

banking fraud2.

In Latin America, significant cases of fraud have

impacted the regional economy. For example, the JP

Morgan Chase case and the Barings Bank fraud are

examples of how fraudulent practices can have

devastating consequences for financial institutions

and the economy in general 3.

2 Gaceta Sanitaria. (2020). Fraudes financieros, salud y calidad de vida: un

estudio cualitativo.

3 Pirani. (2025). Cómo prevenir y gestionar el fraude interno.

10

Political Impact

Frauds also have an impact on the political sphere,

undermining trust in institutions and democratic

processes. Corruption and financial scandals can

erode the legitimacy of governments and weaken the

rule of law.

For instance, in Poland, over 15,000 cases of banking

fraud were registered in six months, totaling over €64

million. This increase in fraud has raised concerns

about the effectiveness of financial institutions and the

need to strengthen oversight and regulatory

mechanisms 4.

Furthermore, a qualitative study on financial fraud and

quality of life revealed that individuals affected by

financial fraud associated with the economic crisis

experienced effects on their physical, mental, and

social health. People who had received financial

compensation for losses generated by the fraud had

better health indicators than those who had not

received compensation 5.

It's evident that suppressing the aforementioned

restrictions represents one of the essential tasks for

the scientific community, due to the deterioration

caused in, for example, credibility in institutions, the

distribution of public resources, and, consequently,

immediate harm to society as a whole. The path

forward consists of creating approaches that enable

4 HuffPost. (2023). Una jubilada gana el juicio a su banco tras sufrir una estafa

bancaria de 10.000 euros.

5 BioCatch. (2021). Abordar el impacto emocional del fraude financiero.:

https://www.biocatch.com/es/blog/abordar-el-impacto-emocional-del-fraude-
financiero

https://www.biocatch.com/es/blog/abordar-el-impacto-emocional-del-fraude-financiero
https://www.biocatch.com/es/blog/abordar-el-impacto-emocional-del-fraude-financiero

11

their prediction, in addition to prevention and combat,

knowing that their disappearance is unlikely as it's

intrinsic to human nature. It is true that some cultures

have managed to keep the phenomenon under

control, notably Japan and the Nordic countries, which

have learned from their painful history that, without

perception of the damage to future generations, wars

inevitably occur under the guise of unethical practices,

incompatible with human progress.

12

Chapter 03. Theory of Fraud and Corruption 6

3.1 Definition and Classes of Fraud

The potential of implementing AI-based algorithms to
more deeply and accurately understand the
circumstances related to criminal actions in general is
under development, although always with some
degree of reduction derived from the unpredictable
nature of the human mind. Attempting to define the
object of study, let's focus on the following types of
fraud: a) bribery, nepotism/favoritism, b) the use of
public resources for personal or partisan benefit,
and c) the abuse of power used to influence
political or administrative decision-makers. The
importance of focusing on these types lies in their
potential to affect everything from personal finances to
macroeconomics, dealing with operations that interact
with society, including practices such as money
laundering, tax evasion, and even the creation of
monopolies and agreements to impose anti-
competitive practices.

3.2 Manifestations of Corruption

Once it's clarified that there is a nuanced difference—
remember, fraud is a qualified crime involving deceit
or swindling as a specific form of corruption, which
refers to any questionable practice, whether by
omission or abuse of power—let's detail. Bribery
implies the payment of money or goods in exchange
for favors or influence to obtain personal or group
benefits or to avoid sanctions. Nepotism is defined by

6 This chapter was a collaboration of the Mexican researchers:
Dr. Suhail Montaño Sánchez and Dr. Rosalía Susana Lastra
Barrios

13

the exercise of favoritism towards family or friends in
selecting or assigning personnel. Clientelism refers
to the exchange of favors or benefits for loyalty or
political support, possibly related to influence
peddling. Embezzlement involves the misuse of
public or private funds, generally in public
procurement, which leads to irregular selection
procedures for contractors or suppliers. Finally,
among the most damaging to public morality, is the
manipulation of justice, essentially through undue
access to judges, prosecutors, or lawyers.

3.3 Economic and Social Impact of Fraud and

Corruption

The analysis of economic-administrative crimes does
not yet lead in the use of algorithms, still suffering from
informational limitations regarding the controversial
causes. This explains why, to date, their study is
restricted to effects and simple perception
measurements, making it indispensable to transform
the analytical paradigm towards the study of the
essence of the human being. The good news is that,
regarding technical restrictions, the solution is
underway through the action of AI, which overcomes
previous impossibilities of connecting, in addition to
real data of individuals and their interactions, towards
capturing previously hidden circumstances that each
type of crime implies, as well as addressing
interpretive needs from different points of view and
disciplinary approaches. The main approaches are
those of fraud affecting economics, politics, sociology,
and psychology, using quantitative, qualitative, mixed
methods, and case studies, in addition to analyzing
both causes and the terrible consequences.

14

Economic Impact

Financial fraud represents a considerable threat to the
global economy. According to a NASDAQ report, in
2023, it was estimated that over $3.1 trillion
circulated through the global financial system in illicit
funds, including $485.6 billion in losses from scams
and bank fraud7.

In Latin America, significant cases of fraud have been
recorded that have affected the regional economy. For
example, the JP Morgan Chase case and the
Barings Bank fraud are examples of how fraudulent
practices can have devastating consequences for
financial institutions and the economy in general 8.

Political Impact

Fraud also has an impact on the political sphere,
undermining confidence in institutions and democratic
processes. Corruption and financial scandals can
erode the legitimacy of governments and weaken
the rule of law.

For example, in Poland, over 15,000 cases of bank
fraud were registered in six months, with a value of
more than €64 million. This increase in fraud has
raised concerns about the effectiveness of financial
institutions and the need to strengthen oversight and
regulatory mechanisms9

Furthermore, a qualitative study on financial fraud and
quality of life revealed that individuals affected by

7 Gaceta Sanitaria. (2020). Financial fraud, health and quality of
life: a qualitative study..
8 Pirani. (2025). How to prevent and manage internal fraud..
9 HuffPost. (2023). A retiree wins a lawsuit against her bank
after being scammed out of 10,000 euros..

15

financial fraud associated with the economic crisis
experienced effects on their physical, psychological,
and social health. People who had received financial
compensation for losses incurred due to fraud had
better health indicators than those who had not
received compensation10

It is evident that suppressing the aforementioned
restrictions represents one of the essential tasks of the
scientific community, due to the deterioration caused
in, for example, credibility in institutions, the
distribution of public resources, and consequently,
immediate damage to society as a whole. The path
forward involves creating approaches that enable its
prediction, as well as its prevention and combat,
recognizing that its disappearance is unlikely as it is
intrinsic to human nature. It is true that some cultures
have managed to keep the phenomenon under
control, notably Japan and the Nordic countries,
who have learned from their painful history that,
without perception of the damages for future
generations, wars inevitably occur under the
protection of unethical practices, incompatible with
human progress.

10 BioCatch. (2021). Addressing the emotional impact of
financial fraud: https://www.biocatch.com/es/blog/abordar-el-
impacto-emocional-del-fraude-financiero

https://www.biocatch.com/es/blog/abordar-el-impacto-emocional-del-fraude-financiero
https://www.biocatch.com/es/blog/abordar-el-impacto-emocional-del-fraude-financiero

16

Chapter 04. Psychological and Sociological

Analysis of Fraud and Corruption 11

4.1 Definition and Classes of Fraud

The potential for implementing AI-based algorithms to
more deeply and accurately understand the
circumstances related to criminal actions in general is
still developing. This development always accounts
for some degree of limitation stemming from the
unpredictable nature of the human mind. To define the
scope of study, we'll focus on the following types of
fraud: a) bribery, nepotism/favoritism; b) the use of
public resources for personal or partisan benefit;
and c) the abuse of power used to influence
political or administrative decision-makers. The
importance of focusing on these types lies in their
potential to affect everything from personal finances to
macroeconomics, involving operations that interact
with society, including practices such as money
laundering, tax evasion, and even the creation of
monopolies and agreements to impose anti-
competitive practices.

4.2 Manifestations of Corruption

It's clear there's a nuanced difference: fraud is a
specific crime involving deceit or swindling, whereas
corruption refers to any questionable practice,

11 This chapter was a collaboration of the Spanish researcher:
Lic. Mariana E.Quaizel

17

whether by omission or abuse of power. More
specifically, bribery involves the payment of money or
goods in exchange for favors or influence, aiming to
gain personal or group benefits or avoid sanctions.
Nepotism is defined by showing favoritism towards
family or friends in personnel selection or assignment.
Clientelism refers to exchanging favors or benefits for
loyalty or political support, potentially linked to
influence peddling. Embezzlement implies the
misuse of public or private funds, often in public
procurement, leading to irregular contractor or
supplier selection procedures. Finally, among the
most damaging to public morale, is the manipulation
of justice, essentially through undue access to
judges, prosecutors, or lawyers.

4.3 Economic and Social Impact of Fraud and

Corruption

The analysis of economic-administrative crimes has
not yet fully embraced algorithmic approaches, still
hampered by informational limitations regarding their
controversial causes. This explains why, to date,
studies are often restricted to measuring effects and
perceptions, making it essential to shift the analytical
paradigm towards understanding the core human
element. The good news is that, on the technical front,
a solution is emerging through AI. It overcomes
previous challenges in connecting real individual and
interaction data, enabling the capture of previously
hidden circumstances inherent in each type of crime.
AI also facilitates the interpretation of needs from
various viewpoints and disciplinary approaches,
primarily focusing on fraud impacting economics,
politics, sociology, and psychology. This involves
using quantitative, qualitative, mixed methods, and
case studies, as well as analyzing both causes and
their daunting consequences.

18

Economic Impact

Financial fraud poses a significant threat to the global
economy. According to a NASDAQ report, an
estimated $3.1 trillion in illicit funds circulated through
the global financial system in 2023, including $485.6
billion in losses from scams and bank fraud [1].

In Latin America, substantial fraud cases have
impacted the regional economy. For example, the JP
Morgan Chase case and the Barings Bank fraud
illustrate how fraudulent practices can have
devastating consequences for financial institutions
and the broader economy [2].

Political Impact

Fraud also impacts the political sphere, undermining
trust in institutions and democratic processes.
Corruption and financial scandals can erode
government legitimacy and weaken the rule of
law.

For instance, in Poland, over 15,000 cases of bank
fraud totaling more than €64 million were recorded in
six months. This surge in fraud has raised concerns
about the effectiveness of financial institutions and the
need to strengthen oversight and regulatory
mechanisms [3].

Moreover, a qualitative study on financial fraud and
quality of life revealed that individuals affected by
financial fraud linked to the economic crisis
experienced impacts on their physical, psychological,
and social health. Those who received financial
compensation for losses due to fraud showed better
health indicators than those who did not [4].

19

Clearly, overcoming these restrictions is a crucial task
for the scientific community, given the resulting
damage to institutional credibility, public resource
distribution, and consequently, immediate harm to
society as a whole. The path forward involves
developing frameworks that enable the prediction,
prevention, and combat of fraud, acknowledging
that its complete eradication is unlikely due to its
intrinsic link to human nature. However, some cultures
have successfully controlled this phenomenon,
notably Japan and the Nordic countries. They've
learned from their painful histories that, without
recognizing the harm to future generations, wars
inevitably arise from unethical practices incompatible
with human progress.

[1] Gaceta Sanitaria. (2020). Financial fraud, health, and quality of life:

A qualitative study. [2] Pirani. (2025). How to prevent and manage
internal fraud. [3] HuffPost. (2023). A retiree wins lawsuit against her
bank after suffering a €10,000 bank scam. [4] BioCatch. (2021).
Addressing the emotional impact of financial fraud.:
https://www.biocatch.com/es/blog/abordar-el-impacto-emocional-del-
fraude-financiero

Psychological Approach

The Intricate Mental Labyrinth of the Fraudster

Fraud and bribery are complex phenomena that
extend beyond simple legal infringements. To
thoroughly understand their origins and
manifestations, it is fundamental to explore the
psychological and sociological dimensions that
fuel them. This section delves into the intricate world
of the human mind and social structures, elucidating
the motives and dynamics that foster these damaging
behaviors.

https://www.biocatch.com/es/blog/abordar-el-impacto-emocional-del-fraude-financiero
https://www.biocatch.com/es/blog/abordar-el-impacto-emocional-del-fraude-financiero

20

Justification and Self-Deception:

Fraudsters often construct narratives that exculpate
their actions, diminishing their severity and shifting
responsibility12. Defense mechanisms like denial and
projection allow them to maintain a favorable self-
image, despite their illicit acts.

The Dark Triad:

Personality traits such as narcissism,
Machiavellianism, and psychopathy can
predispose individuals to fraud13. Arrogance,
manipulation, and a lack of empathy facilitate the
commission of fraudulent acts14 without remorse.

Contextual Factors:

Economic pressure, excessive ambition, and the
perception of impunity can cloud judgment and
promote ethically dubious decision-making. The
workplace or social environment can normalize
fraudulent behaviors, creating fertile ground for
corruption.

Psychology of the Fraudster:

The "intricate mental labyrinth of the fraudster" alludes
to the complex web of motivations, justifications, and
cognitive processes that characterize a person who
commits fraud. Although each case is unique,
psychological and criminological studies have

12 Bergoglio, Jorge Mario sj, Cardinal. (2013). Corruption and Sin.
Editorial Claretiana.
13 Paulhus, D. L., & Williams, K. M. (2002). The dark triad of personality:
Narcissism, Machiavellianism, and psychopathy. Journal of Research in
Personality, 36(6), 556-563.
14 Ashforth, B. E., & Anand, V. (2003). The normalization of corruption
in organizations. Research in Organizational Behavior, 25, 1-52.

21

identified recurrent patterns in the mental profile of
fraudsters. Below, I break down the fundamental
elements of this psychological labyrinth:

1. The Fraud Triangle15

Criminologist Donald Cressey proposed a classic
model to explain fraud, known as: "The Fraud
Triangle":

1. Pressure: The fraudster experiences
pressure, which can be economic (debts,
unsustainable lifestyle), personal (maintaining
status), or professional (meeting unrealistic
goals). This pressure is not always evident to
others.

2. Opportunity: There is a belief that the fraud
can be carried out without being detected,
thanks to weaknesses in control systems or
privileged access.

3. Rationalization: The fraudster justifies their
actions to alleviate guilt. Common examples
include: "It's just a temporary loan," "The
company won't notice," or "I deserve it for my
work."

2. Common Psychological Traits

Fraudsters do not always fit the "criminal" stereotype.
They are often charismatic, intelligent, and trustworthy
individuals, which allows them to gain the credibility of
their victims. Some common psychological traits
include:

A) Narcissism: An exaggerated self-image that leads
to the belief that they are above the rules or deserve

15 Cressey, D. R. (1953). Other people's money: A study of the
social psychology of embezzlement. Free Press.

22

more than they have. B) Lack of Empathy: Although
not all fraudsters are psychopaths, many show an
emotional detachment from the harm they cause 16. C)
Thrill-Seeking: Some commit fraud not only out of
need, but for the adrenaline rush of "getting away with
it." D) Manipulation Capability: The ability to deceive
and persuade, often by exploiting the trust of others.

3. Defense Mechanisms

The fraudster uses psychological mechanisms to
manage the cognitive dissonance between their
values and their actions:

A) Denial: They minimize the severity of their acts
("It's not that big a deal"). B) Projection: They blame
others, such as the company ("They forced me by not
paying me enough"). C) Constant Rationalization:
They reinterpret the fraud as something morally
acceptable.

4. The Fraud Cycle

Fraudulent behavior tends to follow a cycle:

A) Initiation: An initial pressure leads to the first act
of fraud, often minor. B) Escalation: When not
discovered, the fraudster becomes bolder, increasing
the magnitude of the fraud 17. C) Risk Addiction:
Repeated success can create a feeling of invincibility,
leading to careless mistakes. D) Collapse: Detection,

16 Hare, R. D. (1993). Without conscience: The disturbing world
of the psychopaths among us. Pocket Books.

17 Ashforth, B. E., & Anand, V. (2003). The normalization of corruption
in organizations. Research in Organizational Behavior, 25, 1-52.

23

whether through audits, complaints, or self-inflicted
errors, is usually inevitable.

5. Contextual Factors

The environment also shapes the psychological
labyrinth:

A) Organizational Culture: Companies with high
demands for results or a lack of ethics can foster
fraud. B) Normalization of Deception: In some
contexts, small transgressions are seen as "part of the
game," which makes it easier to justify larger acts. C)
Lack of Consequences: If the fraudster perceives no
repercussions, the threshold for acting is reduced18.

6. Emotional Profile

Although fraudsters may appear confident, many
experience:

A) Stress and paranoia: The fear of being discovered
generates constant anxiety. B) Isolation: The need to
maintain the deception isolates them from authentic
relationships. C) Repressed Guilt: Although they
justify their actions, some face internal conflicts that
emerge in times of crisis.

Practical Example

A typical case could be a finance manager who, under
pressure to meet unrealistic goals, falsifies reports to
show better results. Initially, they justify it as a
temporary measure, but over time, the falsification

18 Klitgaard, R. (1988). Controlling corruption. University of California
Press.

24

becomes routine. Their narcissism makes them
believe they are too intelligent to be caught, but
paranoia consumes them until an auditor discovers
the irregularities.

In summary: the intricate mental labyrinth of the
fraudster is a web of personal motivations, moral
justifications, and contextual opportunities.
Understanding this phenomenon requires analyzing
both internal (personality, emotions) and external
(environment, control systems) factors. Fraud
prevention not only involves strengthening controls
but also addressing the pressures and cultures that
facilitate it.

More recent research, such as that detailed in The
psychology, sociology, and behavioral patterns of a
fraudster, has expanded this model with two additional
elements:

• Motivation: The main reason for fraud, not
always linked to pressure, can include the
desire for money, luxury, or other benefits.

• Capability: Includes skills such as lying,
managing stress, coercing others, and
leveraging experience to avoid detection.

These elements interact to form the psychological
"labyrinth," where the fraudster navigates between
needs, opportunities, and justifications to perpetuate
fraud.

Behavioral Indicators

Within an organization, certain behaviors can be
warning signs of a potential fraudster. According to
Psychology of Fraud: Profiling the Fraudster in the
Organization, these include:

25

• Changes in lifestyle: Sudden luxury
acquisitions, such as vehicles or trips, that do
not correspond to the declared salary, may
indicate undeclared income.

• Resistance to sharing tasks: Refusal to take
vacations or delegate responsibilities, to
prevent others from detecting irregularities in
their work.

• Changes in behavior: Increased stress,
anxiety, or mood swings without an apparent
cause, which may indicate guilt or fear of being
discovered.

These indicators, although not definitive, can be
useful for identifying possible cases of fraud and
strengthening internal controls.

Conclusions

The "intricate mental labyrinth of the fraudster" is a
term that reflects the complex interaction between
pressures, opportunities, justifications, and personal
characteristics that lead a person to commit fraud.
Understanding this labyrinth not only helps to detect
and prevent fraud, but also to design more effective
policies and controls in organizations. Research
suggests that a combination of education, robust
internal controls, and an ethical culture can
significantly reduce the risk.

Sociological Approach

The Social Fabric of Corruption:

The social fabric of corruption encompasses the
social, cultural, economic, and institutional dynamics
that allow corruption to take root and perpetuate in a

26

society. This phenomenon is not just an individual act,
but behavior deeply ingrained in social structures and
relationships. Below, this fabric, its components, the
theories that explain it, and strategies to combat it are
explored, based on recent research and sociological
approaches.

The Culture of Impunity:

When corruption is perceived as a common practice
and punishments are lenient 19, a favorable context for
its expansion is created. The absence of transparency
and accountability undermines trust in institutions and
promotes corruption.

Power and Inequality:

Unequal power structures can generate a feeling of
injustice and resentment, which some individuals
channel through corruption. The concentration of
power in the hands of a few facilitates the abuse and
embezzlement of resources.

Corruption Networks:

Corruption is often organized into complex networks,
where individuals and organizations collaborate to
obtain illicit benefits. The influence of social networks
in the increase of fraud and corruption and the
increase of misinformation.

19 Klitgaard, R. (1988). Controlling corruption. University of California

Press.

27

The Influence of Media:

Constant exposure to corruption cases in the media
can desensitize society and create a perception of
normalcy. The impact the media has in constructing a
perception of reality, and the effect this has on
individuals.

Towards a Comprehensive Understanding

Fraud and corruption are multifaceted phenomena
that require a holistic analysis. By combining
psychological and sociological perspectives, we can
achieve a deeper understanding of their causes and
consequences. This knowledge is fundamental for
designing effective prevention and combat strategies
that foster a culture of integrity and transparency.

Detailed Analysis of the Situation

Components of the Social Fabric:

Power and Clientelism Networks:

Corruption is often sustained by social networks that
function as systems for exchanging favors. In many
contexts, especially in countries with weak institutions,
clientelism is a common practice where political or
economic leaders offer resources (jobs, contracts,
money) in exchange for loyalty or votes. According to
an analysis in Corruption from a Sociological
Perspective, these networks create a structure of
dependence that normalizes corruption as a means to
access power or scarce resources.

Example: In Latin America, political clientelism,
where parties distribute goods or services in
exchange for electoral support, is a key mechanism of

28

corruption, as detailed in Corruption and Clientelism:
A Sociological Perspective.

Culture and Social Norms:

Cultural norms significantly influence the perception of
corruption. In societies where corrupt acts are
tolerated or seen as a "way of life," individuals tend to
justify their participation in them. This is known as
"normalization of corruption." For example, paying
bribes to speed up procedures may be considered an
acceptable practice instead of a crime.

Overall Conclusions

• Fraud and bribery are complex phenomena
that transcend purely legal aspects, requiring
an analysis from psychological and sociological
dimensions.

• From a psychological perspective, the
fraudster operates within a "mental labyrinth"
characterized by justification, self-deception,
defense mechanisms like denial and
projection, and personality traits such as
narcissism, Machiavellianism, and
psychopathy.

• Cressey's "Fraud Triangle" (pressure,
opportunity, and rationalization) is a key model
for understanding the motivation behind fraud.

• Behavioral patterns can alert to potential
fraudsters within an organization, such as
changes in lifestyle, resistance to sharing
tasks, and behavioral alterations.

• Fraud prevention requires a multifaceted
approach that combines education, robust
internal controls, and the promotion of an
ethical culture within organizations.

29

• Understanding the "fraudster's psychological
labyrinth" is crucial for designing effective fraud
detection and prevention strategies.

30

Chapter 05. Introduction to Data Analysis

Tools.

In the exciting world of information analysis, the ability
to explore, manipulate, and extract valuable
knowledge from data is essential. Fortunately, you
don't need to invest large sums of money in expensive
software to begin this adventure. In this chapter, we'll
examine some powerful and accessible tools that are
available for free and will allow you to take your first
steps (and much more!) into data analysis.

The democratization of access to analytical tools has
opened up a range of possibilities for students,
professionals, and enthusiasts of all levels. Today,
you have access to robust, user-friendly platforms that
allow you to perform complex analyses without
needing to install software on your computer or worry
about licenses.

Why Choose Free Tools?

• Unrestricted Access: The main advantage is
immediate, cost-free access. This enables you
to experiment, learn, and develop your skills
without an initial investment.

• Dynamic Community: Many of these tools
have vibrant and active user communities that
share knowledge, answer questions, and
create useful resources.

• Flexibility and Versatility: These platforms
often offer a wide variety of functionalities that
adapt to different types of analysis and
projects.

• Constant Updates: Free tools are typically
updated and improved continuously by their

31

developers, ensuring you always have access
to the latest features and enhancements.

Exploring Some Key Tools:

Below, we'll introduce two prominent examples of free
platforms that have become pillars for data analysis:

Google Colaboratory (Colab): Your Cloud Data
Lab

Imagine having an interactive development
environment directly in your browser, without having
to install anything on your computer. Google
Colaboratory, or simply Colab, offers precisely that.

• What is Colab? Colab is a free Python
execution environment that runs entirely in the
cloud. It's based on Jupyter Notebooks,
allowing you to write and run Python code,
visualize data, and add explanatory text (like
this very paragraph) in a single interactive
document: https://colab.google/

• What is it used for? Colab is ideal for a wide
range of data analysis tasks, including:

o Machine learning and artificial
intelligence: It's a popular platform for
experimenting with machine learning
models thanks to its free access to
computing resources (including GPUs
and TPUs).

o Exploratory data analysis (EDA): You
can load your data, clean it, transform it,
and visualize it interactively.

https://colab.google/

32

o Rapid prototyping: It's an excellent tool
for quickly testing ideas and developing
data analysis prototypes.

o Collaboration: You can share your
Colab notebooks with other users to
work on projects collaboratively.

• How to access? You simply need a Google
account to access Colab through your web
browser.

• Usage requirements:
o Web browser: You need a modern web

browser (such as Chrome, Firefox,
Edge, etc.).

o Google account: A Google account is
required to access and save your Colab
notebooks.

o Internet connection: Colab runs in the
cloud, so a stable internet connection is
needed.

Marimo: Interactive Notebooks for Data Science

Marimo is a newer tool gaining popularity in the world
of data analysis and data science. It presents itself as
an innovative way to create interactive notebooks that
are easy to share and deploy.

• What is Marimo? Marimo is a Python library
that allows you to create interactive notebooks
that automatically update as you change
parameter values. It's designed to be user-
friendly and focused on creating interactive
data applications: https://marimo.io/

• What is it used for? Marimo is excellent for:
o Creating interactive dashboards and

visualizations: It allows you to build

https://marimo.io/

33

simple user interfaces for exploring
data.

o Sharing data analysis more
dynamically: Marimo notebooks are
easy to share and run by other users.

o Developing data application
prototypes: Its focus on interactivity
makes it ideal for creating quick demos
and prototypes.

• How to access? Marimo is a Python library
that you can install in your local Python
environment (or in Colab, for example!). Its use
is free and open source.

Beyond These Two:

It's important to note that many other free and open-
source tools are valuable for data analysis, such as
programming languages like Python and R, specific
libraries like Pandas, NumPy, Scikit-learn,
Matplotlib, Seaborn, and many more.

In the exciting world of data analysis, the ability to
explore, manipulate, and extract valuable information
from data is fundamental. Fortunately, you don't need
to invest large sums of money in expensive software
to begin this journey. In this chapter, we'll explore
some powerful and accessible tools that are available
for free and will allow you to take your first steps (and
much more!) into data analysis.

The democratization of access to analytical tools has
opened up a range of possibilities for students,
professionals, and enthusiasts of all levels. Today,
you have access to robust, user-friendly platforms that
allow you to perform complex analyses without

34

needing to install software on your computer or worry
about licenses.

Why Choose Free Tools?

• Unrestricted Access: The main advantage is
immediate, cost-free access. This enables you
to experiment, learn, and develop your skills
without an initial investment.

• Dynamic Community: Many of these tools
have vibrant and active user communities that
share knowledge, answer questions, and
create useful resources.

• Flexibility and Versatility: These platforms
often offer a wide variety of functionalities that
adapt to different types of analysis and
projects.

• Constant Updates: Free tools are typically
updated and improved continuously by their
developers, ensuring you always have access
to the latest features and enhancements.

Other Platforms and Development Environments:

In addition to Colab and Marimo, there are other
valuable platforms and development environments for
data analysis that, in many cases, also offer free or
open-source options. Some of these include:

• Jupyter Notebooks*: The foundation upon
which Colab is built, Jupyter Notebooks is an
interactive computing environment that allows
you to combine code, text, and visualizations in
a single document. It can be installed locally
and is widely used in the data science
community.

35

https://www.anaconda.com/download;
Untitled.ipynb? - JupyterLab

o Usage requirements:
▪ Python installed: You need to

have Python installed.
▪ pip package manager: pip is

required to install the Jupyter
library.

▪ Web browser: It runs in your
local web browser.

▪ Terminal or command line: It's
launched from the terminal or
command line.

• RStudio*: A popular integrated development
environment (IDE) for the R programming
language, offering a user-friendly interface for
writing and executing R code, as well as for
visualizing data and managing projects. Its
basic version is free: https://www.r-project.org/

o Usage requirements:
▪ R installed: You need to have

the R programming language
installed on your system.

▪ Compatible operating system:
Available for Windows, macOS,
and Linux.

• Visual Studio Code* (VS Code): A highly
versatile and free code editor that supports a
wide range of programming languages,
including Python and R, and can be extended
with extensions for data analysis and
visualization: https://code.visualstudio.com/

o Usage requirements:
▪ Compatible operating system:

Available for Windows, macOS,
and Linux.

▪ Installation: Download and
install the software from the
official website.

https://www.anaconda.com/download
https://www.r-project.org/
https://code.visualstudio.com/

36

• Local Python environments*: While Colab is
cloud-based, installing Python and libraries like
Pandas, NumPy, Matplotlib, Seaborn, etc., on
your own computer gives you full control over
your development environment.

o Usage requirements:
▪ Python installed: You need to

install Python on your operating
system.

▪ pip package manager: Used to
install the necessary libraries.

▪ Text editor or IDE: You need a
text editor or an IDE to write your
Python code.

This point has introduced you to the exciting world of
free tools for data analysis. Platforms like Colab and
Marimo are just two examples of how you can start
exploring and working with data without needing to
make a financial investment. Throughout this course,
we will delve deeper into the use of these and other
tools, equipping you with the necessary skills to begin
your journey in the fascinating field of data analysis.
Get ready to discover the power of data at your
fingertips!

37

Chapter 06. Introduction to Algorithms and

Artificial Intelligence.

To understand the scope of algorithms in the battle
against fraud and corruption, it's essential to establish
a firm foundation regarding their nature, operation,
and their connection to artificial intelligence (AI). The
purpose of this chapter is to offer an introduction to
these essential concepts, laying the groundwork for a
deeper understanding of the applications that will be
explored in subsequent chapters.

 What are Algorithms? Fundamental Concepts

In essence, an algorithm constitutes a set of precise
and unambiguous instructions or rules that are
followed to solve a problem or execute a specific task.
Consider an algorithm as a culinary recipe: a
sequence of ordered and exact steps that, when
followed appropriately, will produce a desired result.
In the context of computer science, algorithms are the
foundation of any program or system.20

Algorithms are distinguished by several relevant
characteristics:

• Finiteness: They must conclude after a
defined number of steps.

• Definition: Each step must be clearly specified
and unambiguous.

• Input: They can receive zero or more initial
values.

• Output: They must generate one or more
target values.

20 Aggarwal, Charu C. Data Mining: The Textbook. Springer, 2015.

38

• Effectiveness: Each step must be elementary
enough to be performed in principle by a
person using paper and pencil within a limited
time.

Algorithms can be designed to carry out a wide variety
of tasks, from sorting a list of numbers to performing
complex calculations. In the field of fraud and
corruption detection, algorithms are used to analyze
data, identify patterns, discover anomalies, and make
decisions based on available information.21

Significant Types of Algorithms for Fraud and
Corruption Detection

There are various classes of algorithms, each with its
own strengths and limitations, that are particularly
relevant for identifying fraud and corruption. Some of
the most significant include:

• Classification Algorithms: These algorithms
are used to categorize data into different
classes or groups. In the context of fraud
detection, they can classify a transaction as
"fraudulent" or "non-fraudulent" based on a set
of attributes. Examples include decision trees,
support vector machines (SVM), and neural
networks.

• Clustering Algorithms: These algorithms
group similar data into sets or "clusters" without
prior categorization. They can be useful for
recognizing unusual behaviors or schemes that
might indicate fraud or corruption. Examples
include k-means and DBSCAN.

21 Bishop, Christopher M. Pattern Recognition and Machine
Learning. Springer, 2006.

39

• Anomaly Detection (Outlier Detection)
Algorithms: These algorithms are specifically
designed to locate data points that deviate
significantly from usual behavior. They are
fundamental for detecting suspicious
transactions or atypical activities. Examples
include algorithms based on distance, density,
or deviation.

• Network Analysis Algorithms: These
algorithms study the relationships and
connections between different entities (people,
organizations, transactions, etc.). They are
essential for identifying collusion schemes or
corruption plots. Examples include centrality
analysis and community detection.

Introduction to Artificial Intelligence and Machine
Learning

Artificial Intelligence (AI) is a field of computer
science dedicated to creating systems capable of
performing tasks that typically require human
intelligence. The goal of AI is to develop machines that
can reason, learn, and make decisions similar to
humans.22

Machine Learning (ML) is a branch of AI that focuses
on developing algorithms that can learn from data
without being explicitly programmed. Instead of
following fixed instructions, ML algorithms examine
vast datasets to discover patterns, make predictions,
and improve their performance over time.

22 Russell, Stuart J., and Peter Norvig. Artificial Intelligence: A
Modern Approach. Pearson, 4th ed., 2021.

40

There are different types of machine learning relevant
for fraud and corruption detection:

• Supervised Learning: Algorithms acquire
knowledge from labeled data, i.e., data where
the desired outcome is known (for example,
fraudulent vs. non-fraudulent transactions).
They are used for classification and prediction
tasks.

• Unsupervised Learning: Algorithms learn
from unlabeled data, seeking hidden patterns
and structures within the data. They are used
for tasks such as clustering and anomaly
detection.

• Reinforcement Learning: Algorithms learn
through interaction with an environment,
receiving rewards or penalties for their actions.
Although less common in direct fraud
detection, it can be applied in optimizing
prevention strategies.

AI and ML are crucial for developing more
sophisticated and adaptable fraud and corruption
detection systems, capable of learning new behaviors
and improving their accuracy over time.

Ethics and Biases in Algorithms

While algorithms and AI offer great potential in the
fight against fraud and corruption, it is
fundamental to recognize and address the ethical
implications and potential biases inherent in these
systems.

Algorithms learn from the data they are fed. If the
training data contains biases (for example, if they

41

reflect historical patterns of discrimination), the
algorithm can learn and perpetuate those prejudices
in its predictions and decisions. This could lead to
unfair or discriminatory results in fraud and corruption
detection, disproportionately affecting certain groups.

It is essential to consider ethical aspects such as data
privacy, transparency in algorithm operation (the
"black box" of some AI models can make it difficult to
understand how decisions are made), and
accountability in case of errors or incorrect
decisions.

The responsible implementation of algorithms in the
fight against fraud and corruption requires a thorough
evaluation of potential biases, ensuring transparency,
and adopting ethical frameworks to guide their design,
implementation, and use.

Importance of Technology Against Corruption

Corruption and fraud are complex problems that
demand innovative solutions. The application of
algorithms and data analysis offers significant
potential to strengthen the fight against these
practices, allowing for:

• Early identification of suspicious schemes.
• Efficient analysis of large volumes of data.
• Recognition of hidden networks and

connections.
• Automation of monitoring and control

processes.
• Increased clarity in processes.

42

Chapter 07. Methodology

This book adopts a practical and results-oriented
approach to demonstrate the effective deployment of
advanced algorithms in combating fraud and
corruption. Our methodology is designed to bridge
the gap between theoretical algorithmic
capabilities and their tangible, real-world
application.

Design and Approach

Our approach begins with a comprehensive review of
existing algorithmic techniques pertinent to fraud
and corruption detection. This includes an
examination of various machine learning methods
and anomaly detection strategies that have shown
promise in this domain.

The core of our methodology involves the
presentation and practical application of three
distinct algorithms. These algorithms have been
carefully selected for their efficiency in detecting fraud
and corruption within real-life scenarios. For each
algorithm, we will:

• Detail its underlying principles and how it
addresses specific types of illicit activities.

• Present the creation of relevant datasets
that simulate real-world conditions for fraud
and corruption.

• Provide the algorithm's application code,
enabling reproducibility and practical
understanding.

• Showcase the results derived from its
application to these datasets.

43

This hands-on approach, emphasizing code and data,
distinguishes our work by demonstrating the practical
effectiveness of these tools rather than merely
discussing their theoretical potential.

Expected Outcomes and Implications

The implementation of this methodology is expected
to yield several significant results. These include a
demonstrated capacity for reduced financial losses,
increased detection rates of illicit activities, and
improved efficiency in oversight and enforcement
across various sectors. Ultimately, these practical
applications aim to contribute to greater integrity and
accountability.

While the models themselves have no inherent
limitations in their design, it is crucial to acknowledge
the social implications of deploying such powerful
tools. Algorithms offer a promise of enhanced
transparency and efficiency in combating fraud and
corruption. However, their real-world application
necessitates careful consideration of ethical
dilemmas, potential biases embedded within
training data, and paramount privacy concerns.

The practical implication of this work is to directly
enhance the efficiency and effectiveness of fraud and
corruption detection and prevention. By moving
beyond theoretical discussions, we aim to offer
concrete, deployable tools that organizations can use
to safeguard resources and uphold integrity.

Originality and Value

This research's originality and value lie in its unique
focus on presenting specific algorithms with their
practical application and corresponding code—a

44

combination not widely published at the time of this
article's writing. This work serves as a valuable
resource for practitioners and researchers alike,
advancing the practical front in the ongoing battle
against fraud and corruption.

45

Chapter 08. Algorithms against fraud.

Identifying online fraudulent operations is essential for
e-commerce security. Algorithms play a crucial role in
evaluating each transaction in real-time to determine
its legitimacy.

Operational Data Analysis

Multiple attributes of each transaction are examined,
including credit or debit card information, shipping
address, billing address, purchase amount, and
currency. Algorithms look for suspicious patterns,
such as high-value transactions from atypical
locations or with inconsistent payment information.

Customer Information Verification

Algorithms are used to verify the authenticity of
customer-provided information by comparing it
against databases of fraudulent records or credit
information. This can include verifying the IP address,
email, and phone number.

Identification of Known Fraud Schemes

Rule-based and machine learning algorithms are
implemented to identify known fraud patterns, such as
stolen card usage, phishing, or triangulation fraud.

Analyzing customer behavior over time offers valuable
information for identifying e-commerce fraud.

Habitual Behavior Modeling

Algorithms build habitual behavior profiles for each
customer based on their purchase history, Browse,
and other interactions on the platform.

46

Identifying Deviations from Habitual Behavior

Any activity that significantly deviates from the
customer's habitual behavior can be a red flag. This
could include sudden changes in purchasing patterns,
the use of unusual payment methods, or purchases in
product categories that are uncommon for the
customer.

Browse Path Analysis

Algorithms can analyze how a customer navigates the
website, looking for suspicious behaviors such as
quickly adding numerous items to the cart without
exploring products or making an unusually fast
purchase.

In summary, algorithms are indispensable tools for
protecting the e-commerce environment from fraud.
By examining operational information, customer
information, and behaviors, these systems help
identify and prevent fraudulent activities, ensuring a
safer and more reliable shopping experience for all
users.

-Algorithm Application23

We will develop the application of algorithms based on
the following procedures:

• The datasets used in this book will be
generated by code, thus avoiding practical and
legal issues related to the use of real data. The

23 Mitchell, Tom M. Machine Learning. McGraw-Hill, 1997.

47

goal is to establish datasets that exemplify
plausible scenarios.

• Most of the example datasets will consist of 30
records, indexed from 0 to 29 (following the
convention in data science).

• The variables used will simulate data relevant
to fraud and corruption analysis.

• Specific applications of the algorithms will be
presented, developing open-source code
based on data science. The reader will have an
appendix with a glossary of the tools and
libraries used.

• Using datasets with similar characteristics to
those presented, the reader will be able to
directly apply the algorithms to their own data
and analyze the resulting outputs as
conclusions. It is clarified that each time the
dataset construction code is executed, the data
will change randomly.

• The reader will have access to the author's and
Github repository:
https://github.com/Viny2030/algorithms_fraud_
corruption

•), where they will find the datasets and open-
access code notebooks.

• The datasets will be available as .csv files,
along with two Colab notebooks containing the
developed code and their respective outputs,
all with open access:
https://github.com/Viny2030/algorithms_fraud_
corruption

• The main objective of this book is to propose
practical applications of basic data science
code, using open-access libraries.

• Each algorithm, its dataset, explanation, code,
output, and explanation of the output are
delimited by '======' to facilitate their
presentation and understanding in the text.

https://github.com/Viny2030/algorithms_fraud_corruption
https://github.com/Viny2030/algorithms_fraud_corruption
https://github.com/Viny2030/algorithms_fraud_corruption
https://github.com/Viny2030/algorithms_fraud_corruption

48

• The construction of the datasets and the
analysis of the outputs resulting from the
application of the algorithms will be explained
in detail, facilitating the observation and
understanding of the results.

We will develop the following algorithm in this chapter:

1. Algorithm: The Python code uses the pandas,
scikit-learn, os, and numpy libraries to analyze
e-commerce data with the aim of detecting
possible fraud and suspicious activities. Data is
loaded, and various transformations and
analyses are performed, including the
identification of fraudulent transactions, the
detection of fake accounts, and user behavior
analysis.

I) E-commerce fraud analysis algorithm using logistic

regression to classify transactions as fraudulent or not,

DBSCAN to cluster IP addresses, and a simplified user

behavior analysis to identify highly active users.

Dataset = df_ecomerce.csv

The reader can access the dataset in the author's
repository:

https://raw.githubusercontent.com/Viny2030/a

lgorithms_fraud_corruption/refs/heads/main/d

f_ecommerce.csv

Transaction

_ID Amount Date_Time User_ID IP_Address Product
Is_Frau
dulent

0 1 9864.48

2024-12-31
13:38:39.8

74220 heidichase 192.168.104.70 Charger 0

1 2 4042.04

2025-04-08
21:28:40.5

51705 lmiranda 192.168.237.213 T-shirt 1

https://raw.githubusercontent.com/Viny2030/algorithms_fraud_corruption/refs/heads/main/df_ecommerce.csv
https://raw.githubusercontent.com/Viny2030/algorithms_fraud_corruption/refs/heads/main/df_ecommerce.csv
https://raw.githubusercontent.com/Viny2030/algorithms_fraud_corruption/refs/heads/main/df_ecommerce.csv

49

2 3 477.49

2025-05-18
15:57:24.6

88353 zreese 10.3.132.230 Shoes 0

3 4 835.04

2025-03-06
17:34:17.6

93536
adammend

oza 172.27.31.250 Charger 0

4 5 14063.93

2024-10-10
18:19:05.4

66110
rochaedwa

rd 172.17.54.119 Book 0

5 6 12149.2

2025-03-11
22:54:23.6

06329 sandra00 88.20.162.106 Smartphone 1

Dataset Column Descriptions:

Transaction_ID:

• A unique identifier for each transaction.
• Allows for tracking and referencing each

transaction individually.
• In your example, the values are 1, 2, 3, 4, 5,

and 6. In a complete dataset, we'd expect
each transaction to have a different ID.

Amount:

• The monetary value of the transaction.
• Values are numbers (e.g., 50.00, 1000.50).
• This data is crucial, as unusually high or low

amounts can be indicators of fraud.

Date_Time:

• The date and time the transaction was made.
• Allows for analyzing temporal trends, such as

fraud occurring at certain times of day or days
of the week.

• In your example, all transactions occur
between March 10, 2024, at 10:00 and March
10, 2024, at 10:20.

50

User_ID:

• The identifier of the user who made the
transaction.

• Allows for tracking the activity of individual
users.

• In your example, there are users like
"user123," "guest456," "user789,"
"fraudster01," and "user987."

IP_Address:

• The IP address from which the transaction
was made.

• Can help identify the user's location and
device.

• Examples in your dataset: "192.168.1.10,"
"10.0.0.5," "1.2.3.4."

Product:

• The product purchased in the transaction.
• Examples: "Laptop," "Book," "T-shirt,"

"Shoes," "Television," "Headphones."

Is_Fraudulent:

• A binary variable indicating whether the
transaction is considered fraudulent (1) or not
(0).

• This is the target variable, the one intended to
be predicted.

• In your example, only the transaction with
Transaction_ID 5 is marked as fraudulent.

51

Code:

The reader can access the Algorithm in the author's
repository.

https://github.com/Viny2030/algorithms_fraud_corrup
tion/blob/main/fraud.ipynb

import pandas as pd

from sklearn.model_selection import

train_test_split

from sklearn.linear_model import

LogisticRegression

from sklearn.preprocessing import

StandardScaler, LabelEncoder

from sklearn.metrics import

classification_report, accuracy_score

from sklearn.cluster import DBSCAN

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from faker import Faker

import random

import datetime

Initialize Faker for data generation

fake = Faker()

num_records = 30

Generate synthetic e-commerce data

MODIFIED URL TO RAW FORMAT

url =

'https://raw.githubusercontent.com/Viny2030/

algorithms_fraud_corruption/main/df_ecommerc

e.csv'

df_ecommerce = pd.read_csv(url)

https://github.com/Viny2030/algorithms_fraud_corruption/blob/main/fraud.ipynb
https://github.com/Viny2030/algorithms_fraud_corruption/blob/main/fraud.ipynb

52

df_ecommerce['Date_Time'] =

pd.to_datetime(df_ecommerce['Date_Time']) #

Convert the column to datetime

Mark nighttime transactions as fraudulent

(example rule)

Ensure 'Is_Fraudulent' column exists

before assigning values

if 'Is_Fraudulent' not in

df_ecommerce.columns:

 df_ecommerce['Is_Fraudulent'] = 0 #

Initialize with 0 (not fraudulent)

for index, row in df_ecommerce.iterrows():

 if row['Date_Time'].hour >= 21:

 df_ecommerce.at[index,

'Is_Fraudulent'] = 1

4.1 Online Fraudulent Transaction

Identification

print("\n---")

print("## 4.1 Online Fraudulent Transaction

Identification (Logistic Regression

Example)")

print("---")

if 'Amount' in df_ecommerce.columns and

'Date_Time' in df_ecommerce.columns and

'Is_Fraudulent' in df_ecommerce.columns:

 # Extract temporal features

 df_ecommerce['Hour'] =

df_ecommerce['Date_Time'].dt.hour

 df_ecommerce['Day_of_Week'] =

df_ecommerce['Date_Time'].dt.dayofweek

 # Encode categorical variables

53

 # Only encode 'Product' and 'IP_Address'

for features, 'User_ID' is used for

behavioral analysis later

 df_encoded_transactions =

pd.get_dummies(df_ecommerce,

columns=['Product'], prefix='Prod',

dummy_na=False)

 df_encoded_transactions =

pd.get_dummies(df_encoded_transactions,

columns=['IP_Address'], prefix='IP',

dummy_na=False, prefix_sep='_')

 # Select features for the model

 # Filter out columns that might not

exist after one-hot encoding if a category

is missing

 features_transactions = ['Amount',

'Hour', 'Day_of_Week'] + \

 [col for col in

df_encoded_transactions.columns if

col.startswith('Prod_')] + \

 [col for col in

df_encoded_transactions.columns if

col.startswith('IP_')]

 # Ensure all selected features are

actually in the DataFrame

 features_transactions = [col for col in

features_transactions if col in

df_encoded_transactions.columns]

 if 'Is_Fraudulent' in

df_encoded_transactions.columns and

all(feature in

df_encoded_transactions.columns for feature

in features_transactions):

54

 X_trans =

df_encoded_transactions[features_transaction

s]

 y_trans =

df_encoded_transactions['Is_Fraudulent']

 # Handle cases where there's only

one class in y_trans

 if len(np.unique(y_trans)) < 2:

 print("\nCannot perform logistic

regression: 'Is_Fraudulent' column has only

one unique class.")

 else:

 X_train_trans, X_test_trans,

y_train_trans, y_test_trans =

train_test_split(X_trans, y_trans,

test_size=0.3, random_state=42,

stratify=y_trans)

 scaler_trans = StandardScaler()

 X_train_scaled_trans =

scaler_trans.fit_transform(X_train_trans)

 X_test_scaled_trans =

scaler_trans.transform(X_test_trans)

 model_ecommerce =

LogisticRegression(random_state=42,

solver='liblinear') # Use liblinear for

smaller datasets

 model_ecommerce.fit(X_train_scal

ed_trans, y_train_trans)

 y_pred_ecommerce =

model_ecommerce.predict(X_test_scaled_trans)

 print("\nLogistic Regression

Predictions:", y_pred_ecommerce)

55

 print("Actual Values:",

y_test_trans.values)

 print("Model Accuracy:",

accuracy_score(y_test_trans,

y_pred_ecommerce))

 print("\nClassification

Report:\n",

classification_report(y_test_trans,

y_pred_ecommerce, target_names=list(map(str,

np.unique(y_trans))), zero_division=0))

 # Plotting actual vs predicted

for Logistic Regression

 plt.figure(figsize=(8, 5))

 sns.scatterplot(x=range(len(y_te

st_trans)), y=y_test_trans, label='Actual',

marker='o', s=100)

 sns.scatterplot(x=range(len(y_pr

ed_ecommerce)), y=y_pred_ecommerce,

label='Predicted', marker='x', s=100)

 plt.title('Logistic Regression:

Actual vs. Predicted Fraudulent

Transactions')

 plt.xlabel('Transaction Index')

 plt.ylabel('Is Fraudulent (0=No,

1=Yes)')

 plt.yticks([0, 1])

 plt.legend()

 plt.grid(True)

 plt.show()

 else:

 print("\nCannot perform analysis for

4.1 due to missing necessary columns or

features after encoding.")

else:

56

 print("\nCannot perform analysis for 4.1

due to missing necessary initial columns.")

4.2 Detection of Fake Accounts and

Malicious Activities

print("\n---")

print("## 4.2 Detection of Fake Accounts and

Malicious Activities (DBSCAN on IPs)")

print("---")

if 'IP_Address' in df_ecommerce.columns:

 le_ip = LabelEncoder()

 df_ecommerce['IP_Encoded'] =

le_ip.fit_transform(df_ecommerce['IP_Address

'])

 ip_array =

df_ecommerce[['IP_Encoded']].values

 scaler_ip = StandardScaler()

 ip_scaled =

scaler_ip.fit_transform(ip_array)

 # Adjust eps based on data scale to get

meaningful clusters

 # A smaller eps might result in more

noise, larger eps in fewer, larger clusters

 # For scaled data, 0.5 is a common

starting point, but it's often tuned.

 dbscan_ip = DBSCAN(eps=0.5,

min_samples=2)

 df_ecommerce['IP_Group'] =

dbscan_ip.fit_predict(ip_scaled)

 print("\nIP Clustering (DBSCAN):")

 print(df_ecommerce[['User_ID',

'IP_Address', 'IP_Group']])

 print("\nIP Groups:",

df_ecommerce['IP_Group'].unique())

57

 # Count fraudulent transactions per IP

group, excluding noise (-1)

 fraudulent_per_group =

df_ecommerce[df_ecommerce['IP_Group'] != -

1].groupby('IP_Group')['Is_Fraudulent'].sum(

)

 print("\nNumber of Fraudulent

Transactions per IP Group (excluding

noise):")

 print(fraudulent_per_group)

 # Plotting DBSCAN results

 plt.figure(figsize=(10, 6))

 sns.scatterplot(x=df_ecommerce.index,

y=df_ecommerce['IP_Encoded'],

hue=df_ecommerce['IP_Group'],

palette='viridis', legend='full', s=100)

 plt.title('DBSCAN Clustering of IP

Addresses')

 plt.xlabel('Transaction Index')

 plt.ylabel('Encoded IP Address')

 plt.grid(True)

 plt.show()

else:

 print("\nCannot perform analysis for 4.2

because the 'IP_Address' column is

missing.")

4.3 User Behavior Analysis for Fraud

Detection (Conceptual Example)

print("\n---")

print("## 4.3 User Behavior Analysis for

Fraud Detection (Conceptual Example)")

print("---")

if 'User_ID' in df_ecommerce.columns and

'Date_Time' in df_ecommerce.columns:

58

 user_frequency =

df_ecommerce.groupby('User_ID')['Date_Time']

.count().reset_index(name='Num_Transactions'

)

 print("\nTransaction Frequency per

User:")

 print(user_frequency)

 frequency_threshold = 3

 high_activity_users =

user_frequency[user_frequency['Num_Transacti

ons'] >=

frequency_threshold]['User_ID'].tolist()

 if high_activity_users:

 print(f"\nHigh Activity Users

({frequency_threshold} or more

transactions): {high_activity_users}")

 high_activity_transactions =

df_ecommerce[df_ecommerce['User_ID'].isin(hi

gh_activity_users)]

 print("\nTransactions of High

Activity Users:")

 print(high_activity_transactions[['U

ser_ID', 'Date_Time', 'Amount',

'Is_Fraudulent']])

 # Plotting transaction frequency per

user

 plt.figure(figsize=(12, 6))

 sns.barplot(x='User_ID',

y='Num_Transactions',

hue='Num_Transactions', data=user_frequency,

palette='coolwarm', dodge=False,

legend=False)

 plt.title('Transaction Frequency per

User')

 plt.xlabel('User ID')

59

 plt.ylabel('Number of Transactions')

 plt.xticks(rotation=45, ha='right')

 plt.grid(axis='y', linestyle='--',

alpha=0.7)

 plt.tight_layout()

 plt.show()

 else:

 print("\nNo users with high

transaction frequency were found in this

example.")

else:

 print("\nCannot perform analysis for 4.3

due to missing necessary columns.")

output:

4.1 Online Fraudulent Transaction

Identification (Logistic Regression Example)

Logistic Regression Predictions: [0 0 1 0 0 0 1

0 0]

Actual Values: [0 0 0 0 0 0 1 0 0]

Model Accuracy: 0.8888888888888888

Classification Report:

 precision recall f1-score

support

 0 1.00 0.88 0.93

8

 1 0.50 1.00 0.67

1

 accuracy 0.89

9

 macro avg 0.75 0.94 0.80

9

weighted avg 0.94 0.89 0.90

9

60

4.2 Detection of Fake Accounts and Malicious

Activities (DBSCAN on IPs)

IP Clustering (DBSCAN):

 User_ID IP_Address IP_Group

0 heidichase 192.168.104.70 0

1 lmiranda 192.168.237.213 0

2 zreese 10.3.132.230 0

3 adammendoza 172.27.31.250 0

4 rochaedward 172.17.54.119 0

5 sandra00 88.20.162.106 0

6 lharrison 88.88.168.137 0

7 jgonzalez 10.87.223.126 0

8 dprice 172.16.252.126 0

9 meaganwalton 192.168.57.43 0

10 harmonanthony 10.144.135.200 0

11 daniel81 52.183.225.24 0

12 carsonjames 172.19.179.77 0

61

13 oevans 10.124.237.141 0

14 laurawhite 172.29.145.42 0

15 karen11 10.188.174.33 0

16 sierra36 192.168.87.25 0

17 ewagner 10.139.255.138 0

18 guzmankaren 192.168.146.48 0

19 santosgina 172.20.113.3 0

20 tcurry 71.34.225.88 0

21 mcollier 172.16.228.132 0

22 judyaguilar 192.168.48.224 0

23 marydelgado 10.89.7.208 0

24 ehicks 203.227.27.227 0

25 veronica01 192.168.214.242 0

26 nmccormick 172.23.246.228 0

27 zsuarez 192.168.231.206 0

28 znelson 10.163.12.214 0

29 cpeters 123.218.88.208 0

IP Groups: [0]

Number of Fraudulent Transactions per IP Group

(excluding noise):

IP_Group

0 5

Name: Is_Fraudulent, dtype: int64

62

4.3 User Behavior Analysis for Fraud

Detection (Conceptual Example)

Transaction Frequency per User:

 User_ID Num_Transactions

0 adammendoza 1

1 carsonjames 1

2 cpeters 1

3 daniel81 1

4 dprice 1

5 ehicks 1

6 ewagner 1

7 guzmankaren 1

8 harmonanthony 1

9 heidichase 1

10 jgonzalez 1

11 judyaguilar 1

12 karen11 1

13 laurawhite 1

14 lharrison 1

63

15 lmiranda 1

16 marydelgado 1

17 mcollier 1

18 meaganwalton 1

19 nmccormick 1

20 oevans 1

21 rochaedward 1

22 sandra00 1

23 santosgina 1

24 sierra36 1

25 tcurry 1

26 veronica01 1

27 znelson 1

28 zreese 1

29 zsuarez 1

No users with high transaction frequency were

found in this example.

Explanation:

4.1 Online Fraudulent Transaction Identification

(Logistic Regression Example)

This section focuses on using a Logistic Regression
model to identify potentially fraudulent transactions in
your e-commerce dataset.

• Logistic Regression Predictions: [0 0 1 0 0 0
1 0 0]

o These are the binary predictions made
by the model for the test set. A 0
indicates the model predicted the
transaction as not fraudulent, and a 1
indicates it predicted it as fraudulent. In
this specific output, the model predicted
two transactions as fraudulent (the 3rd
and 7th transactions in the test set).

• Actual Values: [0 0 0 0 0 0 1 0 0]
o These are the true labels for the test set

transactions. In reality, only one
transaction (the 7th) was actually
fraudulent.

64

• Model Accuracy: 0.8888888888888888
o This indicates the overall accuracy of

the model. It correctly predicted 8 out of
9 transactions (8 not fraudulent, and 1
fraudulent). This means about 88.89%
of the predictions were correct.

• Classification Report: This provides a more
detailed breakdown of the model's
performance for each class (0 for non-
fraudulent and 1 for fraudulent).

o precision:
▪ For class 0 (Not Fraudulent):

1.00: When the model predicted
a transaction was NOT
fraudulent, it was correct 100% of
the time. This means there were
no "false positives" for non-
fraudulent cases (no actual non-
fraudulent transactions were
incorrectly flagged as fraudulent).

▪ For class 1 (Fraudulent): 0.50:
When the model predicted a
transaction was fraudulent, it was
correct 50% of the time. This
indicates a "false positive" for
fraudulent cases: out of the two
transactions predicted as
fraudulent, only one was actually
fraudulent.

o recall:
▪ For class 0 (Not Fraudulent):

0.88: The model correctly
identified 88% of all actual non-
fraudulent transactions. This
means it missed some non-
fraudulent transactions and
incorrectly classified them as
fraudulent (which aligns with the
0.50 precision for class 1).

65

▪ For class 1 (Fraudulent): 1.00:
The model correctly identified
100% of all actual fraudulent
transactions. This is excellent, as
it means the model did not miss
any true fraudulent transactions
(no "false negatives").

o f1-score: This is the harmonic mean of
precision and recall, providing a
balanced measure.

▪ For class 0: 0.93: Very good,
reflecting both high precision and
reasonable recall.

▪ For class 1: 0.67: Decent,
balancing the perfect recall with
the lower precision.

o support: This shows the actual number
of instances for each class in the test
set. There were 8 non-fraudulent
transactions and 1 fraudulent
transaction.

o macro avg: The unweighted average of
precision, recall, and f1-score across
both classes.

o weighted avg: The average weighted
by the number of instances (support) for
each class.

Summary of 4.1: The Logistic Regression model
performed quite well at identifying the single
fraudulent transaction (perfect recall for class 1), but it
also had one false positive (it incorrectly flagged a
non-fraudulent transaction as fraudulent). This type of
trade-off (high recall for the positive class at the cost
of some precision) is often acceptable in fraud
detection, where catching all fraudulent cases is often
prioritized over a few false alarms.

66

4.2 Detection of Fake Accounts and Malicious

Activities (DBSCAN on IPs)

This section uses the DBSCAN clustering algorithm
to group transactions based on their IP addresses.
The goal is to identify clusters of transactions
originating from similar IPs, which could indicate
coordinated malicious activity or fake accounts.

• IP Clustering (DBSCAN) Table: This table
shows the User_ID, IP_Address, and the
IP_Group assigned by DBSCAN for each
transaction.

o Each row represents a transaction.
o IP_Group is the cluster ID assigned by

DBSCAN. A value of -1 would indicate
"noise" (outliers that don't belong to any
cluster), but in this specific output, all
transactions are assigned to IP_Group
0.

• IP Groups: [0]
o This confirms that DBSCAN identified

only one cluster (group 0) among all
the provided IP addresses. This
suggests that, based on the eps
(maximum distance between two
samples for one to be considered as in
the neighborhood of the other) and
min_samples (number of samples in a
neighborhood for a point to be
considered as a core point) parameters
used (0.5 and 2 respectively), all your IP
addresses were considered part of the
same dense region.

o Implication: If you were expecting to
see distinct clusters of suspicious IPs,
this output suggests that either the IP
addresses in your dataset are not very

67

diverse, or the eps and min_samples
parameters might need adjustment to
detect finer-grained clusters or outliers.
With all IPs in one group, it's difficult for
DBSCAN to highlight "fake accounts"
solely based on IP patterns.

• Number of Fraudulent Transactions per IP
Group (excluding noise):

o IP_Group 0: 5: This indicates that 5
fraudulent transactions (as labeled in
your Is_Fraudulent column) fall within
the single identified IP_Group 0.

Summary of 4.2: In this particular run, DBSCAN did
not find distinct clusters of IP addresses, assigning all
transactions to a single group. This limits its utility for
identifying suspicious patterns directly from IP
clustering in this specific dataset with the current
parameters. To make this more effective for "fake
account" detection, you'd typically look for smaller,
distinct clusters (potentially with IP_Group -1 for
unique malicious IPs) or groups with a
disproportionately high number of fraudulent activities.

4.3 User Behavior Analysis for Fraud Detection

(Conceptual Example)

This section provides a conceptual example of how
user behavior, specifically transaction frequency,
can be analyzed to detect potential fraud or malicious
activity.

• Transaction Frequency per User Table: This
table lists each User_ID and the
Num_Transactions associated with them.

o In this output, every User_ID has a
Num_Transactions value of 1. This

68

means each user in your current dataset
has performed only one transaction.

• "No users with high transaction frequency
were found in this example."

o This statement directly reflects the data
in the table. Since the
frequency_threshold was set to 3
(meaning 3 or more transactions to be
considered "high activity"), and all users
only have 1 transaction, no users met
this threshold.

Summary of 4.3: The user behavior analysis, in this
instance, shows a very low transaction frequency
across all users in your dataset. This means that,
based on the current data and the defined threshold,
this specific behavioral indicator (high transaction
frequency) did not flag any users as potentially
suspicious. To make this analysis more insightful, you
would typically need a dataset with users who have a
varying and higher number of transactions over time.

69

This scatter plot, titled "Logistic Regression: Actual vs.
Predicted Fraudulent Transactions," visually
compares the true (actual) labels of transactions with
the predictions made by a Logistic Regression model.

Here's a breakdown of the graph's components and
what they represent:

• X-axis: 'Transaction Index': This axis
represents the individual transactions in the
test set, indexed from 0 to 8. So, there are 9
transactions being evaluated.

• Y-axis: 'Is Fraudulent (0=No, 1=Yes)': This
axis represents the binary classification.

o 0: Indicates a transaction is Not
Fraudulent.

70

o 1: Indicates a transaction Is Fraudulent.
• Data Points:

o Blue Circles ('Actual'): These points
represent the true (actual) status of
each transaction.

▪ Most blue circles are at y=0,
meaning most transactions in the
test set were genuinely not
fraudulent.

▪ There is one blue circle at y=1
(at Transaction Index 6),
indicating that this particular
transaction was actually
fraudulent.

o Orange 'x' marks ('Predicted'): These
points represent the predictions made
by the Logistic Regression model for
each transaction.

▪ Most orange 'x' marks are at y=0,
meaning the model predicted
most transactions as not
fraudulent.

▪ There are two orange 'x' marks
at y=1 (at Transaction Index 2
and Transaction Index 6),
meaning the model predicted
these two transactions as
fraudulent.

• Gridlines: The faint grey lines form a grid,
making it easier to read the exact coordinates
of the points.

Interpretation of the Plot (and relation to the
Classification Report previously provided):

1. True Negatives (Correctly Predicted Not
Fraudulent):

o For Transaction Indices 0, 1, 3, 4, 5, 7,
and 8: The blue circle (actual) is at 0,

71

and the orange 'x' (predicted) is also at
0. This means the model correctly
identified 7 non-fraudulent transactions
as non-fraudulent.

2. True Positives (Correctly Predicted
Fraudulent):

o For Transaction Index 6: The blue circle
(actual) is at 1, and the orange 'x'
(predicted) is also at 1. This means the
model correctly identified the one truly
fraudulent transaction as fraudulent.

3. False Positives (Incorrectly Predicted
Fraudulent - Type I Error):

o For Transaction Index 2: The blue circle
(actual) is at 0, but the orange 'x'
(predicted) is at 1. This means the
model incorrectly predicted a non-
fraudulent transaction as fraudulent.
This is a false alarm.

4. False Negatives (Incorrectly Predicted Not
Fraudulent - Type II Error):

o There are no instances where a blue
circle is at 1, but the orange 'x' is at 0.
This means the model did not miss any
actual fraudulent transactions.

In summary, the graph visually confirms the
performance metrics from the classification
report:

• Accuracy: 8 out of 9 correct predictions (7
True Negatives + 1 True Positive).

• Recall for "Fraudulent" (class 1): 100% (it
caught the only actual fraudulent one).

• Precision for "Fraudulent" (class 1): 50%
(out of the 2 predicted fraudulent, only 1 was
truly fraudulent).

• No False Negatives.
• One False Positive.

72

This plot is very effective at quickly illustrating where
the model performed well and where it made errors,
especially for a binary classification task like fraud
detection.

This scatter plot is titled "DBSCAN Clustering of IP
Addresses" and visualizes the results of applying the
DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) algorithm to your IP address
data.

Here's a breakdown of the graph's components and
what they represent:

• X-axis: 'Transaction Index': This axis
represents the index of each transaction in your

73

dataset. It ranges from 0 to 29, indicating there
are 30 transactions plotted.

• Y-axis: 'Encoded IP Address': Since IP
addresses are categorical strings, they cannot
be directly plotted on a numerical axis. Before
applying DBSCAN and plotting, these IP
addresses were converted into numerical
representations (encoded) using
LabelEncoder. This axis shows the numerical
value assigned to each unique IP address. A
specific IP address will always map to the same
encoded value.

• Data Points (Teal Circles): Each circle
represents a single transaction. Its position is
determined by its Transaction Index on the x-
axis and its Encoded IP Address value on the
y-axis.

• Legend: 'IP_Group': This legend indicates
how the data points are colored.

o '0' (Teal color): All data points are
colored teal, and the legend shows only
'0' for 'IP_Group'.

• Gridlines: The faint grey lines form a grid,
making it easier to read the approximate values
of the points.

Interpretation of the Plot:

The most significant piece of information from this plot,
combined with the legend, is that all data points
belong to the same cluster, labeled '0'.

• No Distinct Clusters: If DBSCAN had
identified multiple distinct groups of IP
addresses, you would see different colors
corresponding to different IP_Group numbers
(e.g., 0, 1, 2, etc.).

74

• No Noise Points: If there were IP addresses
that DBSCAN considered "noise" (i.e., not
belonging to any dense cluster), they would
typically be labeled with IP_Group -1 and often
plotted in a distinct color, or not colored at all
by some plotting functions. The absence of
other colors or a "-1" group in the legend
confirms that all points were assigned to the
single cluster.

What this means for your data and DBSCAN
parameters:

Given that all 30 transactions fall into a single
IP_Group 0, it implies one of the following:

1. Low Diversity in Encoded IPs: The eps
(epsilon, maximum distance between samples
for one to be considered as in the
neighborhood of the other) parameter used in
DBSCAN (which was 0.5 in your code) was
large enough that all encoded IP addresses
were considered "close" enough to each other
(after scaling) to form a single, large cluster.

2. Dataset Characteristics: With only 30
transactions, it's possible that the distribution of
IP addresses, once encoded and scaled,
naturally forms one dense region that fits the
DBSCAN parameters.

3. Parameter Tuning Needed (if distinct
clusters are desired): If the goal was to
identify different groups of IP addresses (e.g.,
to find fake accounts sharing a few specific IPs,
or individual IPs that are outliers), the eps value
might need to be decreased, or the
min_samples parameter adjusted, to force
DBSCAN to create more granular clusters or
mark more points as noise.

75

In essence, this plot visually confirms the textual
output that stated "IP Groups: [0]". It shows that the
DBSCAN algorithm, with its current configuration, did
not segment your IP addresses into multiple distinct
groups based on density.

The analysis of e-commerce data using Logistic
Regression demonstrated a high overall accuracy
(approx. 89%) in identifying fraudulent transactions.
The model successfully detected the single actual
fraudulent transaction (100% recall) but produced one
false positive, indicating it might occasionally flag a
legitimate transaction as fraudulent.

Conversely, the DBSCAN clustering of IP addresses
revealed all transactions falling into a single group,
suggesting that with the current parameters, no
distinct suspicious IP clusters or outliers were
identified. Similarly, the user behavior analysis based
on transaction frequency found no high-activity users,
implying that this particular indicator did not flag any
suspicious behavior in the provided dataset.

76

Chapter 09. Algorithms for

accountability.

The implementation of an effective algorithm-based
fraud and corruption identification system requires a
meticulous and multidisciplinary approach.

• Definition of Objectives and Scope: It is
essential to clearly establish the specific
objectives of the system, the types of fraud or
corruption to be addressed, and the scope of
the data to be analyzed.24

• Data Collection and Preparation: The quality
of data is fundamental to the success of any
algorithm-driven system.25 This involves
identifying relevant data sources, collecting the
data, and cleaning and preparing it for analysis
(handling missing values, normalization, etc.).

• Algorithm Selection and Design: The choice
of algorithm or combination of algorithms will
depend on the nature of the data, the system's
objectives, and the type of fraud or corruption
sought to be identified.26 This may involve
selecting classification, clustering, anomaly
detection, or network analysis algorithms.

• Model Development: This involves
implementing the selected algorithm using

24 Davenport, Thomas H., and Jeanne G. Harris. Competing on
Analytics: The New Science of Winning. Harvard Business Press,
2007. (Although not exclusively focused on fraud, it highlights the
importance of data analysis for decision-making and problem detection
within organizations).

26 Bishop, Christopher M. Pattern Recognition and Machine Learning.
Springer, 2006. (A comprehensive text on the fundamentals of
machine learning and pattern recognition).

77

appropriate tools and programming
languages.27 This includes training the model
using historical data (in the case of supervised
learning) and optimizing its parameters.[5]

• Model Validation and Evaluation: It is crucial
to validate the model's performance using test
data and relevant metrics (accuracy,
sensitivity, F1-score, ROC curve area, etc.) to
ensure its effectiveness.

-Algorithm Application28

We will develop the application of the algorithms
based on the following procedures:

• The datasets used in this book will be
generated by code, thus avoiding practical and
legal issues related to the use of real data. The
goal is to establish datasets that exemplify
plausible scenarios.

• Most of the example datasets will consist of 30
records, indexed from 0 to 29 (following the
convention in data science).

• The variables used will simulate data relevant
to fraud and corruption analysis.

• Specific applications of the algorithms will be
presented, developing open-source code
based on data science. The reader will have an
appendix with a glossary of the tools and
libraries used.

27 Aggarwal, Charu C. Data Mining: The Textbook. Springer, 2015. (A
comprehensive text on data mining techniques, many of which are
applicable to online fraud detection).

28 Mitchell, Tom M. Machine Learning. McGraw-Hill, 1997. (A classic
on the fundamentals of machine learning).

78

• Using datasets with similar characteristics to
those presented, the reader will be able to
directly apply the algorithms to their own data
and analyze the resulting outputs as
conclusions. It is clarified that, each time the
dataset construction code is executed, the data
will change randomly.

• The reader will have access to the author's and
GitHub repository:
https://github.com/Viny2030/algorithms_fraud_
corruption/tree/main

 , where they will find the datasets and open-
access code notebooks.

• The datasets will be available as .csv files,
along with two Colab notebooks containing the
developed code and their respective outputs,
all with open access:
https://github.com/Viny2030/algorithms_fraud_
corruption/tree/main

•
• The main objective of this book is to propose

practical applications of basic data science
code, using open-access libraries.

• Each algorithm, its dataset, explanation, code,
output, and output explanation is delimited by
'======' to facilitate its presentation and
understanding in the text.

• The construction of the datasets and the
analysis of the outputs resulting from the
application of the algorithms will be explained
in detail, facilitating the observation and
understanding of the results.

We will develop the following algorithms in this
chapter:

https://github.com/Viny2030/algorithms_fraud_corruption/tree/main
https://github.com/Viny2030/algorithms_fraud_corruption/tree/main
https://github.com/Viny2030/algorithms_fraud_corruption/tree/main
https://github.com/Viny2030/algorithms_fraud_corruption/tree/main

79

1. Algorithm II: The Python code uses the
pandas, numpy, faker, scikit-learn, and
warnings libraries to simulate expense report
data, inject simulated fraud cases, perform
feature engineering, train a Random Forest
model, and evaluate its ability to detect
suspicious reports. The importance of different
features for fraud detection is also analyzed.

II) Algorithm for a machine learning model to control
employee expense reports and detect
inconsistencies. The RandomForestClassifier model
is applied, with cross-validation and stratification, to
detect irregularities through combinations of
variables.

Dataset = df_surrenders1.csv.csv

The reader can access the dataset in the author's
repository:

https://github.com/Viny2030/algorithms_fraud_corruption

/blob/main/df_surrenders1.csv

Report_
ID

Submission_
Date Employee Department

Expense_
Type Description Amount

Receipt_
Attached

Approva
l_Status

Is_Sus
picious

0 1 2024-06-23

Valentino
Delfina
Nuñez
Gonzalez Finance

Office
Supplies expenses 22177.50 Partial Pending 0

1 2 2025-04-20

Renzo
Felipe
Correa
Morales Marketing Other expenses 29155.18 Yes Pending 0

2 3 2024-12-03

Sr(a).
Valentino
Morales Marketing

Travel
Expenses purchases 42132.23 No Pending 1

3 4 2025-05-15

Thiago
Benjamin
Mateo
Gutierrez
Gimenez Purchasing Lunch purchases 45249.36 Partial Pending 0

https://github.com/Viny2030/algorithms_fraud_corruption/blob/main/df_surrenders1.csv
https://github.com/Viny2030/algorithms_fraud_corruption/blob/main/df_surrenders1.csv

80

4 5 2025-01-04

Guadalupe
Perez
Rodriguez Finance

Office
Supplies expenses 27938.81 Yes

Approve
d 0

5 6 2025-02-03

Julian
Tomas
Campos
Franco Sales

Office
Supplies purchases 44169.76 Partial

Approve
d 0

Description of Dataset Columns:

• Report_ID (Rendición Identifier):
o A unique number that identifies each

expense report or statement of
accounts. It is the primary key that
allows distinguishing each record.

• Submission_Date (Fecha de Presentación):
o The date on which the employee

submitted the expense report for review
and approval.

• Employee (Nombre del Empleado):
o The name of the employee who incurred

the expenses and is requesting
reimbursement or approval.

• Department (Departamento del Empleado):
o The department to which the employee

belongs within the company (e.g., HR,
Finance, Marketing, Sales, Purchasing).

• Expense_Type (Tipo de Gasto):
o The general category of the expense

incurred by the employee (e.g., Travel
Expenses, Other, General Expenses,
Transportation, Purchases, Lunch,
Office Supplies).

• Description (Descripción Detallada):
o A more specific description of the goods

or services acquired (e.g., "expenses,"
"travel_expenses").

• Amount (Monto del Gasto):
o The amount of money the employee

spent.
• Receipt_Attached (Justificante Adjunto):

81

o Indicates whether the employee
attached a receipt, invoice, or other
document supporting the expense
("Yes" or "No").

• Approval_Status (Estado de Aprobación):
o The current status of the expense

reimbursement or approval request
(e.g., "Rejected," "Pending,"
"Approved," "Partial"). "Partial" might
mean that only a portion of the
requested amount was approved.

• Is_Suspicious (Es Sospechoso):
o A binary variable (0 or 1) that indicates

whether the expense report is
considered "suspicious" according to
some predefined criteria.

▪ 0: Not suspicious.
▪ 1: Suspicious.

• The condition for Is_Suspicious == 1 is met in
combination with Receipt_Attached == 'No' OR
Approval_Status == 'Rejected'.

How this dataset can be used to detect
irregularities:

This dataset is very valuable for identifying potential
fraud or irregularities in employee expenses. Here are
some ways it can be analyzed:

• Analysis of Spending Patterns:
o By Employee: Identify employees with

unusually high or frequent expenses in
certain categories (e.g., travel
expenses).

o By Department: Compare spending
patterns across departments. Is there
any department with significantly higher
expenses in a specific category?

82

o By Expense Type: Analyze the
distribution of expenses by type. Is there
any expense type with a very high
average amount or a large variability?

• Analysis of Receipts:
o Identify expense reports where no

receipts were attached
("Receipt_Attached" == "No"). This
could indicate lack of documentation or
attempts to hide invalid expenses.

• Analysis of Approval Status:
o Investigate expense reports that were

"Rejected" or "Partially Approved." What
were the reasons for non-approval? Are
there any patterns in the rejections?

• Anomaly Detection:
o Use anomaly detection techniques to

identify expenses that deviate
significantly from the norm (e.g.,
extremely high amounts, expenses on
unusual dates).

• Correlation with "Is_Suspicious":
o Analyze which characteristics are most

strongly correlated with the
"Is_Suspicious" column. This can help
identify the factors that are most
predictive of irregularities.

Examples of possible irregularities that could be
detected:

• Employees inflating travel expenses.
• Expenses in categories not allowed by

company policy.
• Lack of documentation to support expenses.
• Duplicate or fictitious expenses.
• Collusion between employees and vendors to

defraud the company.

83

Code:

The reader can access the Algorithm in the

author's repository:

https://github.com/Viny2030/algorithms_fraud_co

rruption/blob/main/fraud.ipynb

import warnings

warnings.filterwarnings('ignore') # Suppress

warnings for cleaner output

import pandas as pd

import numpy as np

import random

from datetime import timedelta, datetime #

For date generation

Import Faker for realistic data generation

from faker import Faker

Scikit-learn imports for model building

and evaluation

from sklearn.model_selection import (

 cross_val_score,

 StratifiedKFold,

 train_test_split,

)

from sklearn.ensemble import

RandomForestClassifier

from sklearn.preprocessing import

StandardScaler, LabelEncoder

from sklearn.metrics import (

 classification_report,

 accuracy_score,

 confusion_matrix,

)

https://github.com/Viny2030/algorithms_fraud_corruption/blob/main/fraud.ipynb
https://github.com/Viny2030/algorithms_fraud_corruption/blob/main/fraud.ipynb

84

from sklearn.cluster import DBSCAN # Added

for potential clustering on new data

Matplotlib and Seaborn for plotting

import matplotlib.pyplot as plt

import seaborn as sns

--- 1. Data Generation (Expense Reports) -

--

Initialize Faker with an explicit English

locale.

This ensures that employee names are

generated in English.

You can use 'en_US' for American English,

'en_GB' for British English, or 'en' for

generic English.

fake = Faker('en_US')

Number of expense reports to simulate

num_reports = 30 # This variable will be

used consistently throughout the script

Generate random amounts for expense

reports

amounts = np.random.uniform(1000, 50000,

num_reports)

Format amounts to two decimal places (as

strings initially)

formatted_amounts = ["{:.2f}".format(amount)

for amount in amounts]

Create a dictionary to hold the simulated

data for expense reports

data_expense_reports = {

 'Report_ID': range(1, num_reports + 1),

85

 # Generate submission dates within the

last year

 'Submission_Date':

pd.to_datetime([fake.date_between(start_date

='-365d', end_date='today') for _ in

range(num_reports)]),

 # Generate English employee names using

Faker

 'Employee': [fake.name() for _ in

range(num_reports)],

 # Randomly assign departments

 'Department': [random.choice(['Sales',

'Marketing', 'Purchasing', 'HR', 'Finance'])

for _ in range(num_reports)],

 # Randomly assign expense types

 'Expense_Type': [random.choice(['Travel

Expenses', 'Office Supplies', 'Lunch',

'Transportation', 'Other']) for _ in

range(num_reports)],

 # Randomly assign generic descriptions

 'Description':

[random.choice(['expenses',

'travel_expenses', 'purchases',

'general_expenses', 'client_lunch',

'transport_cost']) for _ in

range(num_reports)],

 'Amount': formatted_amounts, # Use the

formatted amounts

 # Randomly assign receipt attachment

status

 'Receipt_Attached':

[random.choice(['Yes', 'No', 'Partial']) for

_ in range(num_reports)],

 # Randomly assign approval status

 'Approval_Status':

[random.choice(['Approved', 'Pending',

'Rejected']) for _ in range(num_reports)],

86

 # Initialize 'Is_Suspicious' column with

zeros (will be updated later)

 'Is_Suspicious': np.zeros(num_reports,

dtype=int)

}

Create the DataFrame from the simulated

data

df_expense_reports =

pd.DataFrame(data_expense_reports)

Convert 'Submission_Date' to datetime

objects (ensure correct type for date

operations)

df_expense_reports["Submission_Date"] =

pd.to_datetime(df_expense_reports["Submissio

n_Date"])

Convert 'Amount' to numeric type (float)

for calculations

df_expense_reports["Amount"] =

pd.to_numeric(df_expense_reports["Amount"])

--- 2. Simulate Internal Fraud Cases

(Expense Reports) ---

Initial marking of suspicious reports

based on predefined rules:

An expense is marked as suspicious (1) if

no receipt is attached OR if its approval

status is 'Rejected'.

df_expense_reports['Is_Suspicious'] =

np.where(

 (df_expense_reports['Receipt_Attached']

== 'No') |

(df_expense_reports['Approval_Status'] ==

'Rejected'),

 1, # Mark as suspicious

87

 0 # Mark as not suspicious

)

Inject more suspicious cases based on a

percentage to create a more balanced dataset

for the model.

This adds more "true" suspicious cases

beyond the initial rule-based ones.

num_additional_suspicious = int(num_reports

* 0.07) # Approximately 7% of total reports

current_suspicious_indices =

df_expense_reports[df_expense_reports['Is_Su

spicious'] == 1].index.tolist()

Select additional indices for suspicious

cases, ensuring they are not already marked.

potential_indices = [i for i in

df_expense_reports.index if i not in

current_suspicious_indices]

if len(potential_indices) > 0: # Check if

there are non-suspicious records to select

from

 additional_suspicious_indices =

np.random.choice(

 potential_indices,

min(num_additional_suspicious,

len(potential_indices)), replace=False

)

 df_expense_reports.loc[additional_suspic

ious_indices, "Is_Suspicious"] = 1

Introduce specific fraud patterns for the

injected suspicious cases (simplified

scenarios)

This adds more realistic characteristics

to the 'suspicious' data points.

88

for idx in

df_expense_reports[df_expense_reports['Is_Su

spicious'] == 1].index:

 # Scenario 1: Duplicate or very close

expenses (20% chance for a suspicious

report)

 # Simulates an employee submitting

similar expenses multiple times.

 if random.random() < 0.2 and idx + 1 <

len(df_expense_reports):

 df_expense_reports.loc[idx + 1,

"Submission_Date"] =

df_expense_reports.loc[idx,

"Submission_Date"] +

timedelta(days=random.randint(0, 2))

 df_expense_reports.loc[idx + 1,

"Employee"] = df_expense_reports.loc[idx,

"Employee"]

 df_expense_reports.loc[idx + 1,

"Expense_Type"] =

df_expense_reports.loc[idx, "Expense_Type"]

 df_expense_reports.loc[idx + 1,

"Amount"] = df_expense_reports.loc[idx,

"Amount"] * random.uniform(0.9, 1.1)

 df_expense_reports.loc[idx + 1,

"Is_Suspicious"] = 1 # Mark the duplicated

one as suspicious too

 # Scenario 2: "Other" expense type with

high amount (15% chance)

 # Flags unusually high amounts in a

generic "Other" category.

 if random.random() < 0.15:

 df_expense_reports.loc[idx,

"Expense_Type"] = "Other"

 df_expense_reports.loc[idx,

"Amount"] = np.random.uniform(5000, 15000)

89

 # Scenario 3: No receipt for significant

amount (15% chance)

 # Highlights missing documentation for

substantial expenses.

 if random.random() < 0.15:

 df_expense_reports.loc[idx,

"Receipt_Attached"] = "No"

 df_expense_reports.loc[idx,

"Amount"] = np.random.uniform(1000, 5000)

 # Scenario 4: Travel expenses on

weekends (10% chance)

 # Catches travel claims made during non-

business days.

 if random.random() < 0.1:

 df_expense_reports.loc[idx,

"Expense_Type"] = "Travel Expenses"

 # Force a weekend date if it's not

already

 current_date =

df_expense_reports.loc[idx,

"Submission_Date"]

 if current_date.weekday() < 5: # If

not Saturday (5) or Sunday (6)

 # Move to the nearest Saturday

or Sunday

 df_expense_reports.loc[idx,

"Submission_Date"] = current_date +

timedelta(days=random.choice([5 -

current_date.weekday(), 6 -

current_date.weekday()]))

--- 3. Feature Engineering for Internal

Fraud Detection (Expense Reports) ---

Create new features that could be

indicative of fraud

90

a) Amount Relative to Average by Expense

Type

Calculates if an expense amount is

significantly higher than the average for

its type.

df_expense_reports["Avg_Amount_Per_Type"] =

df_expense_reports.groupby("Expense_Type")["

Amount"].transform("mean")

df_expense_reports["High_Relative_Amount"] =

np.where(

 df_expense_reports["Amount"] >

df_expense_reports["Avg_Amount_Per_Type"] *

2.5, 1, 0

)

b) Absence of Receipt for Significant

Amounts

Flags expenses with no receipt attached

that exceed a certain threshold.

receipt_threshold = 200

df_expense_reports["No_Receipt_High_Amount"]

= np.where(

 (df_expense_reports["Receipt_Attached"]

== "No")

 & (df_expense_reports["Amount"] >

receipt_threshold),

 1,

 0,

)

c) "Other" Expenses with High Amount

Identifies potentially suspicious large

expenses categorized generically as "Other".

other_amount_threshold = 500

df_expense_reports["Other_High_Amount"] =

np.where(

91

 (df_expense_reports["Expense_Type"] ==

"Other")

 & (df_expense_reports["Amount"] >

other_amount_threshold),

 1,

 0,

)

d) Expense Frequency per Employee (e.g.,

Many expenses in a short time)

Detects if an employee is submitting an

unusually high number of reports on a given

day.

df_expense_reports["Truncated_Date"] =

df_expense_reports["Submission_Date"].dt.dat

e

employee_frequency = (

 df_expense_reports.groupby(["Employee",

"Truncated_Date"])

 .size()

 .reset_index(name="Frequency")

)

df_expense_reports = pd.merge(

 df_expense_reports,

 employee_frequency,

 on=["Employee", "Truncated_Date"],

 how="left",

)

Check for the existence of the 'Frequency'

column after merge

if "Frequency" in

df_expense_reports.columns:

 df_expense_reports["Frequent_Expenses"]

= (

92

 df_expense_reports["Frequency"] > 3

Define threshold for "frequent"

).fillna(0).astype(int)

else:

 print("Error: The 'Frequency' column was

not created correctly during the merge.")

e) Travel Expenses on Weekends

Flags travel expenses submitted for

weekend dates, which might be unusual for

business.

df_expense_reports["Day_of_Week"] =

df_expense_reports["Submission_Date"].dt.day

ofweek # 0: Monday, 6: Sunday

df_expense_reports["Weekend_Travel_Expenses"

] = np.where(

 (df_expense_reports["Expense_Type"] ==

"Travel Expenses")

 & (df_expense_reports["Day_of_Week"] >=

5), # 5 (Saturday) or 6 (Sunday)

 1,

 0,

)

f) Generic Description with High Amount

Identifies high-value expenses with vague

descriptions.

Using a broader set of generic words that

might appear in descriptions

generic_words = ['expenses',

'travel_expenses', 'purchases',

'general_expenses', 'client_lunch',

'transport_cost']

df_expense_reports["Generic_Description"] =

df_expense_reports["Description"].apply(

 lambda x: 1

93

 if any(word in x.lower() for word in

generic_words)

 else 0

)

generic_description_amount_threshold = 300 #

Define threshold for "high amount"

df_expense_reports["Generic_Description_High

_Amount"] = np.where(

 (df_expense_reports["Generic_Description

"] == 1)

 & (df_expense_reports["Amount"] >

generic_description_amount_threshold),

 1,

 0,

)

--- 4. Data Preparation for the Fraud

Detection Model (Expense Reports) ---

Define the features (independent

variables) to be used by the model

features = [

 "Amount",

 "High_Relative_Amount",

 "No_Receipt_High_Amount",

 "Other_High_Amount",

 "Frequent_Expenses",

 "Weekend_Travel_Expenses",

 "Generic_Description_High_Amount",

 "Avg_Amount_Per_Type", # Include mean

amount per type as a feature

]

X = df_expense_reports[features] # Features

DataFrame

y = df_expense_reports["Is_Suspicious"] #

Target variable (Is_Suspicious)

94

X = X.fillna(0) # Fill any potential NaNs

created by feature engineering with 0

--- 5. Design of the Internal Fraud

Detection System (AI Model - Expense

Reports) ---

print("\n---")

print("## Internal Fraud Detection System

(AI Model) for Expense Reports")

print("---")

Initialize the RandomForestClassifier

model

RandomForest is a robust ensemble method

suitable for classification tasks.

model_internal_fraud_detection =

RandomForestClassifier(random_state=42)

Set up Stratified K-Fold Cross-Validation

for robust model evaluation.

StratifiedKFold ensures that the

proportion of target variable

(Is_Suspicious) is

roughly the same in each fold as in the

whole dataset, which is crucial for

imbalanced datasets.

cv = StratifiedKFold(n_splits=5,

shuffle=True, random_state=42)

Perform cross-validation and print the

accuracy scores

This gives an estimate of the model's

performance on unseen data during training.

scores = cross_val_score(

 model_internal_fraud_detection, X, y,

cv=cv, scoring="accuracy"

)

95

print(f"\nCross-Validation Accuracy:

{np.mean(scores):.4f} (+/-

{np.std(scores):.4f})")

Split the data into training and testing

sets.

test_size=0.3 means 30% of data will be

used for testing.

stratify=y ensures that the proportion of

suspicious/non-suspicious cases is

maintained

in both train and test sets, preventing

skewed evaluation.

X_train, X_test, y_train, y_test =

train_test_split(

 X, y, test_size=0.3, random_state=42

)

Scale the features using StandardScaler.

This normalizes the data to have a mean of

0 and standard deviation of 1.

Scaling is important for many machine

learning algorithms, though less critical

for Random Forests.

scaler = StandardScaler()

X_train_scaled =

scaler.fit_transform(X_train) # Fit scaler

on training data and transform it

X_test_scaled = scaler.transform(X_test) #

Transform test data using the same scaler

(do not fit again)

Train the Random Forest model on the

scaled training data.

model_internal_fraud_detection.fit(X_train_s

caled, y_train)

Make predictions on the scaled test data.

96

y_pred_internal_fraud =

model_internal_fraud_detection.predict(X_tes

t_scaled)

print("\n---")

print("### Model Evaluation on the Test

Set:")

print("---")

Print overall accuracy of the model on the

test set.

print("Accuracy:", accuracy_score(y_test,

y_pred_internal_fraud))

print(

 "\nClassification Report:\n",

 classification_report(

 y_test,

 y_pred_internal_fraud,

 target_names=["Not Suspicious",

"Suspicious"], # Labels for the target

classes in the report

),

)

print(

 "\nConfusion Matrix:\n",

 confusion_matrix(y_test,

y_pred_internal_fraud),

)

--- 6. Visualization of Model Performance

(Expense Reports) ---

Plotting Confusion Matrix

cm = confusion_matrix(y_test,

y_pred_internal_fraud)

plt.figure(figsize=(6, 5))

sns.heatmap(cm, annot=True, fmt='d',

cmap='Blues',

97

 xticklabels=['Predicted Not

Suspicious', 'Predicted Suspicious'],

 yticklabels=['Actual Not

Suspicious', 'Actual Suspicious'])

plt.title('Confusion Matrix for Fraud

Detection (Expense Reports)')

plt.xlabel('Predicted Label')

plt.ylabel('True Label')

plt.show()

Plotting Feature Importance

This shows which features contributed most

to the model's predictions.

if hasattr(model_internal_fraud_detection,

'feature_importances_'):

 feature_importances = pd.DataFrame(

 {'Feature': features, 'Importance':

model_internal_fraud_detection.feature_impor

tances_})

 feature_importances =

feature_importances.sort_values(by='Importan

ce', ascending=False)

 plt.figure(figsize=(10, 6))

 sns.barplot(x='Importance', y='Feature',

data=feature_importances, palette='viridis')

 plt.title('Feature Importance for Fraud

Detection (Expense Reports)')

 plt.xlabel('Importance')

 plt.ylabel('Feature')

 plt.grid(axis='x', linestyle='--',

alpha=0.7)

 plt.show()

Plotting Distribution of Actual vs.

Predicted Suspicious Reports

98

Helps to visually compare the true class

distribution with the model's predicted

distribution.

df_results = pd.DataFrame({'Actual': y_test,

'Predicted': y_pred_internal_fraud})

df_results['Actual_Label'] =

df_results['Actual'].map({0: 'Not

Suspicious', 1: 'Suspicious'})

df_results['Predicted_Label'] =

df_results['Predicted'].map({0: 'Not

Suspicious', 1: 'Suspicious'})

plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1) # First plot in a 1x2

grid

sns.countplot(x='Actual_Label',

data=df_results, palette='coolwarm')

plt.title('Actual Distribution of Suspicious

Reports (Expense Reports)')

plt.xlabel('Status')

plt.ylabel('Count')

plt.subplot(1, 2, 2) # Second plot in a 1x2

grid

sns.countplot(x='Predicted_Label',

data=df_results, palette='coolwarm')

plt.title('Predicted Distribution of

Suspicious Reports (Expense Reports)')

plt.xlabel('Status')

plt.ylabel('Count')

plt.tight_layout() # Adjust layout to

prevent overlapping titles/labels

plt.show()

Plotting Amount Distribution for

Suspicious vs. Non-Suspicious

99

Shows how the 'Amount' feature is

distributed for each class, highlighting

potential patterns.

plt.figure(figsize=(10, 6))

sns.histplot(data=df_expense_reports,

x='Amount', hue='Is_Suspicious', kde=True,

palette='viridis', multiple='stack')

plt.title('Distribution of Amount by

Suspicious Status (Expense Reports)')

plt.xlabel('Amount')

plt.ylabel('Count')

plt.show()

--- 7. Simulation of System Application

(Expense Reports) ---

print("\n---")

print("### Example of how the System could

identify suspicious expense reports:")

print("---")

Create a copy of the test data and add the

model's predictions

df_test_results =

df_expense_reports.loc[X_test.index].copy()

df_test_results['Predicted_Suspicious'] =

y_pred_internal_fraud

Filter for reports that the system

predicted as suspicious

suspicious_reports =

df_test_results[df_test_results['Predicted_S

uspicious'] == 1][

 ['Report_ID', 'Submission_Date',

'Employee', 'Department', 'Expense_Type',

'Amount',

 'Receipt_Attached', 'Approval_Status',

'Is_Suspicious', 'Predicted_Suspicious']]

100

if not suspicious_reports.empty:

 print("\nExpense Reports Marked as

Suspicious by the System:")

 print(suspicious_reports)

 print("\nThese expense reports might

require a more thorough review.")

else:

 print("\nThe system did not detect any

suspicious expense reports in the simulated

test set.")

--- 8. Feature Importance Analysis

(Expense Reports) ---

This section is included for completeness,

as the feature importance was already

calculated and plotted.

if hasattr(model_internal_fraud_detection,

'feature_importances_'):

 print("\n---")

 print("### Analysis of Feature

Importance (from RandomForestClassifier -

Expense Reports):")

 print("---")

 # The feature_importances DataFrame was

already created and printed above.

 print(feature_importances)

Save the generated DataFrame to a CSV file

csv_filename = 'df_expense_reports.csv' #

Renamed for clarity

df_expense_reports.to_csv(csv_filename,

index=False)

print(f"\n\nThe complete DataFrame has been

successfully saved to the file

'{csv_filename}'")

101

print("\nFirst 5 rows of the generated

DataFrame (to check English names and

data):")

print(df_expense_reports.head())

==

==================================

NEW SECTION: Fraud Detection for

Surrenders (df_surrenders1.csv)

==

==================================

print("\n" + "="*80)

print("## Fraud Detection for Surrenders

(Analysis of df_surrenders1.csv)")

print("="*80)

Load the new dataset

surrenders_url =

'https://raw.githubusercontent.com/Viny2030/

algorithms_fraud_corruption/main/df_surrende

rs1.csv'

try:

 df_surrenders =

pd.read_csv(surrenders_url)

 print("\nSuccessfully loaded

df_surrenders1.csv")

 print("\nFirst 5 rows of

df_surrenders:")

 print(df_surrenders.head())

 # --- Data Preprocessing for

df_surrenders ---

102

 # Convert 'Date' column to datetime, if

it exists and is not already.

 # You'll need to adapt these column

names based on the actual CSV content.

 if 'Date' in df_surrenders.columns:

 df_surrenders['Date'] =

pd.to_datetime(df_surrenders['Date'])

 else:

 print("Warning: 'Date' column not

found in df_surrenders. Date-based features

cannot be created.")

 # Convert 'Amount' to numeric, if it

exists.

 if 'Amount' in df_surrenders.columns:

 df_surrenders['Amount'] =

pd.to_numeric(df_surrenders['Amount'],

errors='coerce')

 df_surrenders['Amount'] =

df_surrenders['Amount'].fillna(0) # Fill NaN

after conversion

 else:

 print("Warning: 'Amount' column not

found in df_surrenders. Amount-based

features cannot be created.")

 # Assuming 'Is_Fraudulent' or a similar

target column exists in df_surrenders.

 # If not, you'll need to define how

fraud is identified in this dataset.

 if 'Is_Fraudulent' not in

df_surrenders.columns:

 print("Warning: 'Is_Fraudulent'

column not found in df_surrenders.

Initializing as all 0s.")

 df_surrenders['Is_Fraudulent'] = 0

103

 # You might need to add rules here

to simulate fraud if the dataset doesn't

have labels.

 # Example: Mark a random percentage

as fraudulent

 # fraud_indices =

np.random.choice(df_surrenders.index,

size=int(len(df_surrenders)*0.1),

replace=False)

 # df_surrenders.loc[fraud_indices,

'Is_Fraudulent'] = 1

 # --- Feature Engineering for Surrenders

Fraud Detection ---

 # This section needs to be adapted to

the actual columns in df_surrenders1.csv

 # Example features, assuming columns

like 'Amount', 'Date', 'Type_of_Surrender'

might exist:

 if 'Date' in df_surrenders.columns:

 df_surrenders['Day_of_Week'] =

df_surrenders['Date'].dt.dayofweek

 df_surrenders['Hour'] =

df_surrenders['Date'].dt.hour

 df_surrenders['Month'] =

df_surrenders['Date'].dt.month

 # Example: High value surrenders (adjust

column names as per actual data)

 if 'Amount' in df_surrenders.columns:

 df_surrenders['High_Value_Surrender'

] = np.where(df_surrenders['Amount'] >

df_surrenders['Amount'].quantile(0.95), 1,

0) # Top 5% amount

104

 # Example: Frequency of surrenders by a

user/policy holder

 if 'User_ID' in df_surrenders.columns

and 'Date' in df_surrenders.columns:

 df_surrenders['Daily_Surrender_Count

'] = df_surrenders.groupby(['User_ID',

df_surrenders['Date'].dt.date])['User_ID'].t

ransform('count')

 df_surrenders['Frequent_Surrender']

=

np.where(df_surrenders['Daily_Surrender_Coun

t'] > 1, 1, 0) # More than one surrender per

day

 # Identify categorical columns for

encoding (adapt these based on your

df_surrenders)

 categorical_cols_surr = [col for col in

df_surrenders.columns if

df_surrenders[col].dtype == 'object' and col

not in ['User_ID', 'Date', 'Is_Fraudulent']]

 # Drop columns that are not useful as

features directly or have been transformed

 cols_to_drop_surr = ['Date'] # Assuming

'Date' was used to create temporal features

 df_surrenders_encoded =

df_surrenders.copy()

 for col in categorical_cols_surr:

 df_surrenders_encoded =

pd.get_dummies(df_surrenders_encoded,

columns=[col], prefix=col, dummy_na=False)

 df_surrenders_encoded =

df_surrenders_encoded.drop(columns=[col for

col in cols_to_drop_surr if col in

105

df_surrenders_encoded.columns],

errors='ignore')

 # Define features and target for

surrenders fraud detection

 # You MUST adjust these features based

on the actual columns present and relevant

to fraud in df_surrenders1.csv

 surrender_features = []

 if 'Amount' in

df_surrenders_encoded.columns:

 surrender_features.append('Amount')

 if 'Day_of_Week' in

df_surrenders_encoded.columns:

 surrender_features.extend(['Day_of_W

eek', 'Hour', 'Month'])

 if 'High_Value_Surrender' in

df_surrenders_encoded.columns:

 surrender_features.append('High_Valu

e_Surrender')

 if 'Frequent_Surrender' in

df_surrenders_encoded.columns:

 surrender_features.append('Frequent_

Surrender')

 # Add encoded categorical features

 surrender_features.extend([col for col

in df_surrenders_encoded.columns if

col.startswith(tuple(categorical_cols_surr))

])

 # Filter to only include features that

actually exist in the DataFrame

 surrender_features = [f for f in

surrender_features if f in

df_surrenders_encoded.columns]

106

 if not surrender_features:

 print("Error: No valid features

could be identified for surrenders fraud

detection. Check df_surrenders1.csv

content.")

 else:

 X_surr =

df_surrenders_encoded[surrender_features]

 y_surr =

df_surrenders_encoded['Is_Fraudulent']

 # Ensure the target variable has at

least two unique classes for classification

 if len(np.unique(y_surr)) < 2:

 print("\nCannot perform

classification for surrenders:

'Is_Fraudulent' column has only one unique

class after processing.")

 print("Consider simulating more

fraudulent cases or check data

generation/labeling for df_surrenders.")

 else:

 # Split data for surrenders

 X_train_surr, X_test_surr,

y_train_surr, y_test_surr =

train_test_split(

 X_surr, y_surr,

test_size=0.3, random_state=42,

stratify=y_surr

)

 # Scale features for surrenders

 scaler_surr = StandardScaler()

 X_train_scaled_surr =

scaler_surr.fit_transform(X_train_surr)

 X_test_scaled_surr =

scaler_surr.transform(X_test_surr)

107

 # Train a new model for

surrenders fraud detection

 model_surrenders_fraud =

RandomForestClassifier(random_state=42)

 model_surrenders_fraud.fit(X_tra

in_scaled_surr, y_train_surr)

 y_pred_surr =

model_surrenders_fraud.predict(X_test_scaled

_surr)

 print("\n---")

 print("### Model Evaluation for

Surrenders Fraud Detection:")

 print("---")

 print("Accuracy:",

accuracy_score(y_test_surr, y_pred_surr))

 print(

 "\nClassification

Report:\n",

 classification_report(

 y_test_surr,

 y_pred_surr,

 target_names=["Not

Fraudulent", "Fraudulent"],

 zero_division=0 # Handle

cases where a class has no predicted samples

),

)

 print(

 "\nConfusion Matrix:\n",

 confusion_matrix(y_test_surr

, y_pred_surr),

)

 # --- Visualization for

Surrenders Fraud Detection ---

108

 cm_surr =

confusion_matrix(y_test_surr, y_pred_surr)

 plt.figure(figsize=(6, 5))

 sns.heatmap(cm_surr, annot=True,

fmt='d', cmap='Blues',

 xticklabels=['Predic

ted Not Fraudulent', 'Predicted

Fraudulent'],

 yticklabels=['Actual

Not Fraudulent', 'Actual Fraudulent'])

 plt.title('Confusion Matrix for

Surrenders Fraud Detection')

 plt.xlabel('Predicted Label')

 plt.ylabel('True Label')

 plt.show()

 if

hasattr(model_surrenders_fraud,

'feature_importances_'):

 feature_importances_surr =

pd.DataFrame(

 {'Feature':

surrender_features, 'Importance':

model_surrenders_fraud.feature_importances_}

)

 feature_importances_surr =

feature_importances_surr.sort_values(by='Imp

ortance', ascending=False)

 plt.figure(figsize=(10, 6))

 sns.barplot(x='Importance',

y='Feature', data=feature_importances_surr,

palette='viridis')

 plt.title('Feature

Importance for Surrenders Fraud Detection')

 plt.xlabel('Importance')

 plt.ylabel('Feature')

109

 plt.grid(axis='x',

linestyle='--', alpha=0.7)

 plt.show()

 # --- Simulation of System

Application (Surrenders) ---

 print("\n---")

 print("### Example of how the

System could identify suspicious

surrenders:")

 print("---")

 df_test_results_surr =

df_surrenders_encoded.loc[X_test_surr.index]

.copy()

 df_test_results_surr['Predicted_

Fraudulent'] = y_pred_surr

 suspicious_surrenders =

df_test_results_surr[df_test_results_surr['P

redicted_Fraudulent'] == 1]

 # Select relevant columns for

display (adapt as needed for df_surrenders)

 display_cols_surr = [col for col

in ['User_ID', 'Date', 'Amount',

'Is_Fraudulent', 'Predicted_Fraudulent'] if

col in suspicious_surrenders.columns]

 if not

suspicious_surrenders.empty:

 print("\nSurrenders Marked

as Fraudulent by the System:")

 print(suspicious_surrenders[

display_cols_surr].head()) # Display only

first few rows

110

 print("\nThese surrenders

might require a more thorough review.")

 else:

 print("\nThe system did not

detect any suspicious surrenders in the test

set.")

except Exception as e:

 print(f"\nError loading or processing

df_surrenders1.csv: {e}")

 print("Please ensure the URL is correct

and the CSV file has expected columns.")

Save the generated DataFrame to a CSV file

csv_filename_surrenders =

'df_surrenders_processed.csv'

if 'df_surrenders' in locals(): # Only save

if DataFrame was loaded

 df_surrenders.to_csv(csv_filename_surren

ders, index=False)

 print(f"\n\nThe processed Surrenders

DataFrame has been successfully saved to the

file '{csv_filename_surrenders}'")

output:

Internal Fraud Detection System (AI Model)

for Expense Reports

Cross-Validation Accuracy: 0.8000 (+/- 0.1633)

Model Evaluation on the Test Set:

Accuracy: 0.7777777777777778

Classification Report:

 precision recall f1-score

support

111

Not Suspicious 0.50 0.50 0.50

2

 Suspicious 0.86 0.86 0.86

7

 accuracy 0.78

9

 macro avg 0.68 0.68 0.68

9

 weighted avg 0.78 0.78 0.78

9

Confusion Matrix:

 [[1 1]

 [1 6]]

112

113

Example of how the System could identify

suspicious expense reports:

Expense Reports Marked as Suspicious by the

System:

 Report_ID Submission_Date

Employee Department \

15 16 2024-11-16 Laura

Scott Marketing

17 18 2024-07-22 Jacob

Turner HR

8 9 2025-04-17 Christian

Zimmerman HR

9 10 2024-10-12 Jennifer

Miller Finance

28 29 2024-09-18 Daniel

Davis HR

24 25 2024-09-01 Charles

Welch HR

114

12 13 2024-12-13 Steven

Brown Finance

 Expense_Type Amount

Receipt_Attached Approval_Status \

15 Transportation 3851.490000

Partial Pending

17 Other 3004.159536

No Approved

8 Other 22242.520000

No Rejected

9 Other 1061.218161

No Pending

28 Travel Expenses 28735.820000

No Approved

24 Travel Expenses 33198.460000

No Pending

12 Travel Expenses 4962.780000

No Rejected

 Is_Suspicious Predicted_Suspicious

15 0 1

17 1 1

8 1 1

9 1 1

28 1 1

24 1 1

12 1 1

These expense reports might require a more

thorough review.

Analysis of Feature Importance (from

RandomForestClassifier - Expense Reports):

 Feature Importance

0 Amount 0.423115

3 Other_High_Amount 0.181111

2 No_Receipt_High_Amount 0.167748

7 Avg_Amount_Per_Type 0.158574

1 High_Relative_Amount 0.044587

5 Weekend_Travel_Expenses 0.024867

4 Frequent_Expenses 0.000000

6 Generic_Description_High_Amount 0.000000

115

The complete DataFrame has been successfully

saved to the file 'df_expense_reports.csv'

First 5 rows of the generated DataFrame (to

check English names and data):

 Report_ID Submission_Date Employee

Department Expense_Type \

0 1 2024-12-26 Amanda Buckley

HR Transportation

1 2 2025-01-13 Christopher Rojas

Marketing Other

2 3 2024-07-07 Alexandra Vasquez

HR Travel Expenses

3 4 2024-08-12 David Lin

Marketing Office Supplies

4 5 2024-10-05 Christine Clark

Purchasing Office Supplies

 Description Amount

Receipt_Attached Approval_Status \

0 travel_expenses 21156.340000

Partial Approved

1 client_lunch 35276.100000

Yes Rejected

2 client_lunch 4796.582926

No Rejected

3 expenses 7504.530000

Partial Approved

4 client_lunch 48507.310000

Yes Pending

 Is_Suspicious ... High_Relative_Amount

No_Receipt_High_Amount \

0 0 ... 0

0

1 1 ... 0

0

2 1 ... 0

1

3 0 ... 0

0

4 0 ... 0

0

 Other_High_Amount Truncated_Date Frequency

Frequent_Expenses \

116

0 0 2024-12-26 1

0

1 1 2025-01-13 1

0

2 0 2024-07-07 1

0

3 0 2024-08-12 1

0

4 0 2024-10-05 1

0

 Day_of_Week Weekend_Travel_Expenses

Generic_Description \

0 3 0

1

1 0 0

1

2 6 1

1

3 0 0

1

4 5 0

1

 Generic_Description_High_Amount

0 1

1 1

2 1

3 1

4 1

[5 rows x 21 columns]

===

=================================

Fraud Detection for Surrenders (Analysis of

df_surrenders1.csv)

===

=================================

Successfully loaded df_surrenders1.csv

First 5 rows of df_surrenders:

 Report_ID Submission_Date Employee

Department Expense_Type \

0 1 2025-04-19 Kathryn Davis

Purchasing Travel Expenses

117

1 2 2025-03-01 Sherri Foster

Purchasing Transportation

2 3 2024-07-22 Tammy Davis

Finance Lunch

3 4 2024-08-22 Patrick Nash

Purchasing Office Supplies

4 5 2024-07-13 Joshua James

Purchasing Travel Expenses

 Description Amount Receipt_Attached

Approval_Status Is_Suspicious

0 expenses 48570.45 Partial

Rejected 1

1 expenses 43889.48 Yes

Pending 0

2 expenses 38807.68 Yes

Rejected 1

3 general_expenses 4477.03 No

Pending 1

4 travel_expenses 33072.31 Yes

Rejected 1

Warning: 'Date' column not found in

df_surrenders. Date-based features cannot be

created.

Warning: 'Is_Fraudulent' column not found in

df_surrenders. Initializing as all 0s.

Cannot perform classification for surrenders:

'Is_Fraudulent' column has only one unique

class after processing.

Consider simulating more fraudulent cases or

check data generation/labeling for

df_surrenders.

The processed Surrenders DataFrame has been

successfully saved to the file

'df_surrenders_processed.csv'

118

Explanation:

Internal Fraud Detection System (AI Model) for

Expense Reports

This section details the development and evaluation
of an AI model (Random Forest Classifier) designed
to detect suspicious expense reports.

• Cross-Validation Accuracy: 0.8000 (+/-
0.1633)

o This metric is obtained through cross-
validation, a technique that evaluates
the model's performance on multiple
subsets of the training data.

o An average accuracy of 80% suggests
that the model is generally good at
distinguishing between suspicious and
non-suspicious reports.

o The +/- 0.1633 indicates the standard
deviation of these accuracy scores
across different folds. A relatively high
standard deviation suggests some
variability in the model's performance
depending on which data subset it's
trained/tested on. This could point to a
slightly unstable model or a dataset that
is small or has some variance.

Model Evaluation on the Test Set:

This part presents the model's performance on a
completely unseen subset of data (the test set) after it
has been trained.

119

• Accuracy: 0.7777777777777778
o The overall accuracy on the test set is

approximately 77.78%. This means that
roughly 78% of the predictions made by
the model on new, unseen expense
reports were correct.

• Classification Report:
o This report provides a more granular

view of the model's performance for
each class: "Not Suspicious" (0) and
"Suspicious" (1).

o Precision (Not Suspicious): 0.50
▪ When the model predicted a

report was "Not Suspicious," it
was correct 50% of the time. This
implies a significant number of
false positives for this class,
meaning some truly suspicious
reports were incorrectly classified
as "Not Suspicious" by the
model's prediction, or some "Not
Suspicious" were misclassified
(which is not directly shown here
for this class, but hinted by the
low recall).

o Recall (Not Suspicious): 0.50
▪ The model correctly identified

50% of all actual "Not
Suspicious" reports. This means
it missed half of the non-
suspicious reports.

o F1-score (Not Suspicious): 0.50
▪ This is the harmonic mean of

precision and recall. A low F1-
score for "Not Suspicious"
suggests the model struggles
with correctly identifying this
class.

120

o Precision (Suspicious): 0.86
▪ When the model predicted a

report was "Suspicious," it was
correct 86% of the time. This is a
good precision, meaning most
reports flagged as suspicious by
the model were indeed
suspicious.

o Recall (Suspicious): 0.86
▪ The model correctly identified

86% of all actual "Suspicious"
reports. This is also a good recall,
indicating the model is effective
at catching most of the genuinely
suspicious cases.

o F1-score (Suspicious): 0.86
▪ A high F1-score for "Suspicious"

(0.86) is very positive in fraud
detection, as it indicates a good
balance between precision and
recall for the class of interest.

o Support:
▪ There were 2 actual "Not

Suspicious" reports and 7
actual "Suspicious" reports in
the test set. This shows an
imbalanced dataset, with many
more suspicious cases than non-
suspicious ones in this specific
test split. The model performed
better on the majority class
("Suspicious").

• Confusion Matrix:
o [[1 1]
o [1 6]]
o This matrix visualizes the number of

correct and incorrect predictions:

121

▪ True Negative (Top-Left): 1 -
The model correctly predicted 1
"Not Suspicious" report as "Not
Suspicious".

▪ False Positive (Top-Right): 1 -
The model incorrectly predicted 1
"Not Suspicious" report as
"Suspicious" (Type I error, a
"false alarm").

▪ False Negative (Bottom-Left): 1
- The model incorrectly predicted
1 "Suspicious" report as "Not
Suspicious" (Type II error, a
"missed fraud").

▪ True Positive (Bottom-Right): 6
- The model correctly predicted 6
"Suspicious" reports as
"Suspicious".

Example of how the System could identify
suspicious expense reports:

This section provides a practical demonstration by
listing the expense reports from the test set that the
system flagged as suspicious (Predicted_Suspicious
= 1).

• The table shows the details of 7 reports that the
model predicted to be suspicious.

• Key observation: Compare Is_Suspicious
(actual label) with Predicted_Suspicious
(model's prediction).

o For Report_ID 16 (row 15 in the table),
Is_Suspicious is 0, but
Predicted_Suspicious is 1. This is the
False Positive identified in the
confusion matrix. The model incorrectly
flagged this one.

122

o For all other 6 reports listed,
Is_Suspicious is 1 and
Predicted_Suspicious is 1. These are
the True Positives. The model correctly
identified these 6 fraudulent cases.

• The output correctly states: "These expense
reports might require a more thorough review,"
which is the practical implication of a fraud
detection system.

Analysis of Feature Importance (from
RandomForestClassifier - Expense Reports):

This section shows which features were most
influential in the Random Forest model's decision-
making process for identifying suspicious expense
reports.

• Amount (0.423115): This is by far the most
important feature. The monetary value of the
expense report is a strong indicator of
suspicion.

• Other_High_Amount (0.181111): Whether an
"Other" expense type had a high amount is the
next most important. This confirms the
engineered feature's value.

• No_Receipt_High_Amount (0.167748): The
absence of a receipt for a high amount is also
a very significant indicator, as expected.

• Avg_Amount_Per_Type (0.158574): The
average amount for a given expense type,
used to calculate relative high amounts, also
plays a notable role.

• High_Relative_Amount (0.044587): While
related to Amount and
Avg_Amount_Per_Type, this specific
engineered feature has a lower but still present
importance.

123

• Weekend_Travel_Expenses (0.024867):
Travel expenses on weekends have some
minor importance.

• Frequent_Expenses (0.000000) and
Generic_Description_High_Amount
(0.000000): These features had no importance
in this specific model run. This could mean they
are not strong indicators of fraud in this dataset,
or their information is already captured by other
more important features.

First 5 rows of the generated DataFrame (to check
English names and data):

This displays the head of your df_expense_reports
DataFrame, showing the raw data and the newly
engineered features. It confirms that the data loading,
simulation, and feature engineering steps were
successful, and the DataFrame contains all the
expected columns used for training and analysis.

Fraud Detection for Surrenders (Analysis of

df_surrenders1.csv)

This section attempts to perform a similar fraud
detection analysis on a new dataset,
df_surrenders1.csv.

• Successfully loaded df_surrenders1.csv
• First 5 rows of df_surrenders: This shows

the initial rows of the loaded
df_surrenders1.csv.

o It contains columns like Report_ID,
Submission_Date, Employee,
Department, Expense_Type,
Description, Amount, Receipt_Attached,
Approval_Status, and Is_Suspicious.

124

o It appears this dataset, despite being
named df_surrenders1.csv, contains
columns very similar to those of
df_expense_reports.csv. This suggests
it might be a different iteration or version
of the expense reports data, or contains
similar types of fields.

• Warning: 'Date' column not found in
df_surrenders. Date-based features cannot
be created.

o The code expected a column named
'Date' for time-based feature
engineering (like Day_of_Week, Hour,
Month), but the loaded df_surrenders
has Submission_Date instead. This
means the date-related feature
engineering steps were skipped.

• Warning: 'Is_Fraudulent' column not found
in df_surrenders. Initializing as all 0s.

o The code looked for a target variable
called Is_Fraudulent, but it found
Is_Suspicious instead. It then
proceeded to initialize a new
Is_Fraudulent column with all zeros and
applied a small simulation to it. This
indicates a potential mismatch in column
names or expected data labels between
the original script's design and the
loaded df_surrenders1.csv.

• Cannot perform classification for
surrenders: 'Is_Fraudulent' column has
only one unique class after processing.
Consider simulating more fraudulent cases
or check data generation/labeling for
df_surrenders.

o This is a critical error. After the data
loading and the (limited) simulation of
Is_Fraudulent cases, the y_surr target
variable for the surrenders dataset

125

ended up containing only one unique
value (likely all 0s, or all 1s if the
simulation was overly aggressive).

o A classification model (like Random
Forest) requires at least two distinct
classes in the target variable to learn
and differentiate. If there's only one
class, there's nothing to classify.

o This usually happens if:
▪ The actual Is_Suspicious (or

equivalent) column in
df_surrenders1.csv was not
correctly used as the target.

▪ The simulation of "fraudulent"
cases was insufficient, leading to
all or almost all entries still being
non-fraudulent (or vice-versa).

▪ The stratify parameter in
train_test_split could not find both
classes to split them.

• The processed Surrenders DataFrame has
been successfully saved to the file
'df_surrenders_processed.csv'

o Despite the classification error, the
DataFrame df_surrenders (with its
added and modified columns) was
successfully saved to a new CSV file.

Overall Conclusion for the Surrenders Section:
The script successfully loaded the df_surrenders1.csv
file, but due to a mismatch in expected column names
(Date vs Submission_Date, Is_Fraudulent vs
Is_Suspicious) and/or an issue with ensuring a
balanced enough target variable during the
(re)initialization and simulation of fraud labels, the
fraud detection model for surrenders could not be
trained or evaluated. This section requires reviewing
the df_surrenders1.csv content and adjusting the

126

code to correctly map its columns and ensure a
meaningful target variable for classification.

This image displays a Confusion Matrix for Fraud
Detection (Expense Reports). It's a fundamental tool
for evaluating the performance of a classification
model, especially when dealing with imbalanced
datasets or when the costs of different types of errors
vary.

127

Here's a breakdown of the graph's components and
what they represent:

• Title: "Confusion Matrix for Fraud Detection
(Expense Reports)": Clearly states the
purpose and context of the matrix.

• Axes Labels:
o Y-axis: 'True Label': Represents the

actual status of the expense reports in
your test dataset.

▪ 'Actual Not Suspicious':
Reports that were truly not
suspicious.

▪ 'Actual Suspicious': Reports
that were truly suspicious (i.e.,
actual fraud cases or highly
suspicious activities).

o X-axis: 'Predicted Label': Represents
the status predicted by your Logistic
Regression model.

▪ 'Predicted Not Suspicious':
Reports the model classified as
not suspicious.

▪ 'Predicted Suspicious': Reports
the model classified as
suspicious.

• Cells and Values: Each cell at the intersection
of a "True Label" row and a "Predicted Label"
column contains a number, which represents
the count of expense reports falling into that
category.

o Top-Left Cell (1): True Negatives (TN)
▪ Interpretation: 1 expense report

was actually Not Suspicious,
and the model correctly
predicted it as Not Suspicious.

▪ This is a correct prediction.
o Top-Right Cell (1): False Positives

(FP)

128

▪ Interpretation: 1 expense report
was actually Not Suspicious,
but the model incorrectly
predicted it as Suspicious.

▪ This is a Type I error, often
referred to as a "false alarm." In
fraud detection, it means a
legitimate report was flagged as
fraudulent.

o Bottom-Left Cell (1): False Negatives
(FN)

▪ Interpretation: 1 expense report
was actually Suspicious, but
the model incorrectly predicted
it as Not Suspicious.

▪ This is a Type II error, often
referred to as a "missed
detection." In fraud detection, this
is typically the more critical error,
as a fraudulent activity goes
undetected.

o Bottom-Right Cell (6): True Positives
(TP)

▪ Interpretation: 6 expense
reports were actually
Suspicious, and the model
correctly predicted them as
Suspicious.

▪ This is a correct prediction, and
these are the fraud cases the
model successfully identified.

• Color Bar (Right Side): This indicates the
intensity of the color in the heatmap,
corresponding to the numerical values in the
cells. Darker blue generally means a higher
count.

Summary of Model Performance based on this
Confusion Matrix:

129

• Total instances in the test set: 1 (TN) + 1
(FP) + 1 (FN) + 6 (TP) = 9 expense reports.

• Actual Not Suspicious: 1 + 1 = 2 reports.
• Actual Suspicious: 1 + 6 = 7 reports. (This

highlights the class imbalance, with more
suspicious cases in this particular test set.)

• Model Accuracy: (TN + TP) / Total = (1 + 6) /
9 = 7 / 9 ≈ 0.7778 (77.78%).

• Key Strengths: The model is quite good at
identifying actual suspicious cases (6 True
Positives).

• Key Weaknesses:
o It produced one false positive (a non-

suspicious report was flagged as
suspicious).

o Crucially, it missed one actual
suspicious report (one false negative),
which is a significant concern in fraud
detection where catching all fraudulent
activity is often paramount.

This confusion matrix provides a clear and concise
visual summary of where your fraud detection model
is performing well and where it is making mistakes,
allowing for a more nuanced understanding than just
overall accuracy.

130

This bar chart is titled "Feature Importance for Fraud
Detection (Expense Reports)" and it visualizes the
relative importance of different features (variables) in
your Random Forest classification model for
identifying suspicious expense reports.

Here's a breakdown of the graph's components and
what they represent:

• Title: "Feature Importance for Fraud
Detection (Expense Reports)": Clearly
indicates the purpose of the plot – showing
which features contributed most to the model's
predictions.

• Y-axis: 'Feature': This lists the names of the
features that were used as input to your
Random Forest model. These are the variables
from your expense report data.

• X-axis: 'Importance': This represents the
importance score assigned to each feature by
the Random Forest model. In Random Forests,
feature importance is typically calculated based

131

on how much each feature reduces impurity
(like Gini impurity) across all trees in the forest.
A higher score means the feature was more
influential in the model's decision-making
process.

• Horizontal Bars: Each bar corresponds to a
feature, and its length indicates its importance
score. The bars are sorted in descending order
of importance, with the most important feature
at the top.

• Colors (Palette): The bars use a color gradient
(from deep purple to teal/green), which can
sometimes be used to distinguish features or
simply for aesthetic purposes.

Interpretation of the Plot:

The plot provides valuable insights into what the
model learned and what characteristics of an expense
report are most indicative of suspicious activity.

1. 'Amount' is the Most Important Feature:
o The bar for 'Amount' is significantly

longer than any other, with an
importance score around 0.42. This
indicates that the monetary value of an
expense report is by far the strongest
predictor of whether it is suspicious.
Larger amounts might be more closely
scrutinized or might inherently carry
more risk.

2. Key Engineered Features are Highly
Relevant:

o 'Other_High_Amount' (around 0.18
importance): This feature flags if an
expense categorized as "Other" has a
high amount. It's the second most

132

important, suggesting that generic, high-
value claims are a strong indicator.

o 'No_Receipt_High_Amount' (around
0.17 importance): This indicates that
expenses lacking a receipt, especially
for higher amounts, are also very
important for fraud detection.

o 'Avg_Amount_Per_Type' (around 0.16
importance): The average amount for a
given expense type is also quite
important. This likely helps the model
contextualize individual transaction
amounts.

3. Features with Moderate Importance:
o 'High_Relative_Amount' (around 0.04

importance): While related to 'Amount'
and 'Avg_Amount_Per_Type', its
specific flag for unusually high amounts
is still somewhat informative.

o 'Weekend_Travel_Expenses' (around
0.02 importance): Whether a travel
expense occurred on a weekend has
some minor predictive power.

4. Features with Zero Importance:
o 'Frequent_Expenses' and

'Generic_Description_High_Amount'
both show an importance of 0.00. This
means that, in this particular model and
with this dataset, these features did not
contribute at all to the model's ability to
predict whether an expense report was
suspicious. This could be because their
information is redundant with other
features, or they simply aren't strong
indicators of fraud in your simulated
data.

In conclusion: The model heavily relies on the
Amount and several engineered features related to

133

missing receipts and "other" expense types to identify
suspicious expense reports. This suggests that the
synthetic fraud patterns you introduced (e.g., high
amounts, missing receipts, vague descriptions) are
effectively being learned by the model. Features
related to frequency and generic descriptions,
however, did not prove useful in this specific instance.

This image contains two bar charts side-by-side,
comparing the actual and predicted distributions of
suspicious reports for Expense Reports. They help
visualize how well the model's predictions align with
the true labels, especially in terms of class
proportions.

Left Plot: "Actual Distribution of Suspicious
Reports (Expense Reports)"

• Title: "Actual Distribution of Suspicious
Reports (Expense Reports)"

• X-axis: 'Status': Shows the true labels of the
reports: "Suspicious" and "Not Suspicious".

• Y-axis: 'Count': Represents the number of
reports for each status.

• Bars:

134

o "Suspicious" (Left Bar, Light Blue):
The bar reaches a count of 7. This
means that in the actual test set, there
were 7 reports that were truly
suspicious.

o "Not Suspicious" (Right Bar, Light
Orange): The bar reaches a count of 2.
This means that in the actual test set,
there were 2 reports that were truly
not suspicious.

• Interpretation: This plot clearly shows the true
class distribution in your test set. It indicates a
class imbalance, with significantly more
suspicious reports (7) than non-suspicious
ones (2).

Right Plot: "Predicted Distribution of Suspicious
Reports (Expense Reports)"

• Title: "Predicted Distribution of Suspicious
Reports (Expense Reports)"

• X-axis: 'Status': Shows the labels predicted by
your Logistic Regression model: "Not
Suspicious" and "Suspicious".

• Y-axis: 'Count': Represents the number of
reports predicted for each status.

• Bars:
o "Not Suspicious" (Left Bar, Light

Blue): The bar reaches a count of 2.
This means the model predicted 2
reports as Not Suspicious.

o "Suspicious" (Right Bar, Light
Orange): The bar reaches a count of 7.
This means the model predicted 7
reports as Suspicious.

• Interpretation: This plot shows the model's
predicted class distribution.

135

Comparison and Conclusion:

By comparing both plots, we can see:

1. Actual Suspicious vs. Predicted
Suspicious:

o Actual: 7 suspicious reports.
o Predicted: 7 suspicious reports.
o The model's total count of predicted

suspicious reports matches the actual
total count of suspicious reports. This
looks good at a glance, but the
confusion matrix tells us more about
which specific reports were correctly or
incorrectly classified.

2. Actual Not Suspicious vs. Predicted Not
Suspicious:

o Actual: 2 not suspicious reports.
o Predicted: 2 not suspicious reports.
o Similarly, the model's total count of

predicted non-suspicious reports
matches the actual total count.

Overall Conclusion from these plots: These plots
indicate that the model successfully captured the
overall proportions of suspicious and non-
suspicious classes present in the test set. While the
total counts match, it's crucial to remember that this
doesn't guarantee perfect individual classification. As
seen in the confusion matrix, one "Actual Not
Suspicious" report was incorrectly predicted as
"Suspicious" (a False Positive), and one "Actual
Suspicious" report was incorrectly predicted as "Not
Suspicious" (a False Negative). These plots show the
aggregate count, which happens to align, but the
confusion matrix provides the specific breakdown of
correct vs. incorrect classifications for each class.

136

This graph is a histogram titled "Distribution of
Amount by Suspicious Status (Expense Reports)." It
shows the distribution of the 'Amount' of expense
reports, separated and stacked by their
'Is_Suspicious' status.

Here's a breakdown of the graph's components and
what they represent:

• Title: "Distribution of Amount by
Suspicious Status (Expense Reports)":
Clearly states that the plot is analyzing the
relationship between the expense amount and
its suspicious status.

• X-axis: 'Amount': Represents the monetary
value of the expense reports. The range

137

appears to be from 0 to 50,000, likely reflecting
the scale of your generated data.

• Y-axis: 'Count': Represents the number of
expense reports falling within specific 'Amount'
bins.

• Bars (Histograms): The bars are stacked to
show the counts for each Is_Suspicious
category within each 'Amount' range (bin).

o Light Blue/Gray (Top part of stacked
bars) for Is_Suspicious = 0: These
parts of the bars represent the count of
Non-Suspicious expense reports.

o Light Green (Bottom part of stacked
bars) for Is_Suspicious = 1: These
parts of the bars represent the count of
Suspicious expense reports.

• KDE (Kernel Density Estimate) Lines: The
smooth curves overlaid on the histograms
represent the estimated probability density
functions for each Is_Suspicious group.

o Darker Blue Curve: Represents the
density distribution for Is_Suspicious = 0
(Non-Suspicious reports).

o Lighter Green Curve: Represents the
density distribution for Is_Suspicious = 1
(Suspicious reports). These curves help
visualize the overall shape of the
distribution for each group.

• Legend: 'Is_Suspicious': Indicates which
color corresponds to which status (0 for Not
Suspicious, 1 for Suspicious).

Interpretation of the Plot:

This graph is crucial for understanding if the 'Amount'
feature can help differentiate between suspicious and
non-suspicious expense reports.

138

1. Overlap in Distributions: Both the 'Not
Suspicious' (blue) and 'Suspicious' (green)
distributions for 'Amount' largely overlap. This
means that both suspicious and non-
suspicious reports can occur across the entire
range of amounts, from very small to very large.

2. Higher Concentration of Suspicious
Reports at Lower-Mid Amounts:

o The green bars (Suspicious) appear to
have a higher count, especially in the
lower to mid-range of amounts (e.g.,
between 0 and roughly 20,000-25,000).
The light green KDE curve is also
somewhat higher in this region
compared to the blue curve. This
suggests that a significant portion of
suspicious reports falls within these
lower to mid-amount brackets.

3. Higher Concentration of Non-Suspicious
Reports at Higher Amounts (but less
pronounced):

o While there are suspicious reports
across all amounts, the blue bars (Non-
Suspicious) and the dark blue KDE
curve show some presence across the
entire range, including at higher
amounts (e.g., above 30,000). However,
given the overall imbalance in the data
(more suspicious reports), this doesn't
necessarily mean non-suspicious
reports are exclusively high value.

4. No Clear Separation: There isn't a distinct
"cutoff" amount where reports clearly transition
from non-suspicious to suspicious or vice-
versa. This implies that while Amount is a
strong feature (as seen in feature
importance), it's not a perfect discriminator on
its own. Other features are likely needed to
correctly classify reports with similar amounts.

139

In conclusion: The 'Amount' of an expense report is
a relevant factor in fraud detection, with suspicious
activities appearing more frequently in the lower to
mid-range of amounts in this dataset. However, its
distribution heavily overlaps with non-suspicious
transactions, indicating that it needs to be combined
with other features for effective classification.

The analysis involved two distinct fraud detection
efforts: one for Expense Reports and another for
Surrenders.

For Expense Reports, a Random Forest model
achieved an overall accuracy of approximately 78%
on the test set, with a cross-validation accuracy of
80%. The model demonstrated good performance in
identifying truly suspicious cases (86% recall for the
'Suspicious' class) and, when it predicted a report was
suspicious, it was correct 86% of the time (precision).
The confusion matrix showed 6 true positives
(correctly identified suspicious reports), 1 false
positive (a non-suspicious report flagged as
suspicious), and 1 false negative (a suspicious report
missed). Feature importance analysis revealed that
Amount, Other_High_Amount, and
No_Receipt_High_Amount were the most critical
factors in detecting suspicious activities.
Visualizations further illustrated the model's
performance, showing its ability to capture the class
distribution despite some misclassifications, and
highlighting the significant overlap in 'Amount'
distribution between suspicious and non-suspicious
reports.

The Surrenders section successfully loaded the
df_surrenders1.csv dataset. However, due to missing
or misnamed key columns (Date and Is_Fraudulent)
and an issue with the simulated target variable

140

resulting in only one unique class, the classification
model for surrenders could not be trained or
evaluated. This indicates a need for data
preprocessing and labeling adjustments for the
df_surrenders1.csv dataset to enable fraud detection
in that context.

141

Chapter 10. Algorithms against

corruption.

The building of a just and balanced society. The
disclosure of government information and the use of
technological tools, such as algorithms,29 can
significantly enhance these principles, facilitating the
identification of anomalies and promoting greater
accountability from public entities.30 This chapter
examines how algorithms are used to consolidate
clarity and accountability.

10.1 Analysis of Disclosed Information for

Anomaly Identification

The Open Data initiative involves the publication of
government information in accessible and reusable
formats for the public. Algorithms can examine these
extensive datasets to identify patterns, trends, and
potential anomalies that might otherwise go
unnoticed.

• Analysis of Public Procurement
Information: Disclosed information on tenders

29 James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
An Introduction to Statistical Learning: with Applications in R. Springer,
2013. (A more accessible introduction to statistical learning concepts).

30 Grimmelikhuijsen, Stephan, and Victor Bekkers. "Open government
data: A systematic review of the benefits and risks." Information Polity,
Vol. 19, No. 3-4 (2014), pp. 233-253. (Analyzes the benefits and risks of
open data).

142

and contracts can be examined by algorithms
to detect potential corrupt practices, such as
bid rigging, awarding contracts to companies
with dubious connections, or lack of
transparency in processes.31

• Identification of Unusual Behavioral
Patterns: Algorithms can identify unusual
behavioral patterns in disclosed information,
such as the repeated use of certain suppliers in
contracts, the frequency of certain
transactions, or the existence of atypical
relationships between different entities.32

10.2 Algorithm Application33

We will develop the application of algorithms based on
the following procedures:

• The datasets used in this book will be
generated by code, thus avoiding practical and
legal issues related to the use of real data. The

31 Benkler, Yochai. The Wealth of Networks: How Social Production
Transforms Markets and Freedom. Yale University Press, 2006.
(Although broader, it discusses the power of information and
collaboration in society, relevant to the concept of open data).

32 Aggarwal, Charu C. Data Mining: The Textbook. Springer, 2015. (A
comprehensive text on data mining techniques, many of which are
applicable to online fraud detection).

33 Mitchell, Tom M. Machine Learning. McGraw-Hill, 1997. (A classic on
the fundamentals of machine learning).

143

objective is to establish datasets that exemplify
plausible scenarios.

• Most of the example datasets will consist of 30
records, indexed from 0 to 29 (following the
convention in data science).

• The variables used will simulate data relevant
to the analysis of fraud and corruption.

• Specific applications of the algorithms will be
presented, developing open-source code
based on data science. The reader will have an
appendix with a glossary of the tools and
libraries used.

• Using datasets with similar characteristics to
those presented, the reader will be able to
directly apply the algorithms to their own data
and analyze the resulting outputs as
conclusions. It is clarified that, each time the
dataset construction code is executed, the data
will change randomly.

• The reader will have access to the author's and
book's GitHub repository), where they will find
the datasets and open-access code notebooks.

• The datasets will be available as .csv files,
along with two Colab notebooks containing the
developed code and their respective outputs,
all with open access:

• The main objective of this book is to propose
practical applications of basic data science
code, using open-access libraries.

• Each algorithm, its dataset, explanation, code,
output, and output explanation is delimited by
'======' to facilitate its presentation and
comprehension in the text.

• The construction of the datasets and the
analysis of the outputs resulting from the
application of the algorithms will be explained
in detail, facilitating the observation and
understanding of the results.

144

We will develop the following algorithms in this
chapter:

Algorithm III: The Python code uses the
pandas, scikit-learn, faker, and numpy libraries
to simulate data for politicians, inject suspicious
cases, perform feature engineering, train a
Random Forest model, and evaluate its ability
to detect potentially suspicious politicians. The
importance of different features for corruption
detection is also analyzed.

III) Algorithm for a machine learning model: This code
creates a system to detect politicians potentially
involved in corruption by simulating irregular data,
creating new features, and training a Random Forest
model to classify politicians as suspicious or non-
suspicious.

Dataset = df_politicians.csv

https://github.com/Viny2030/algorithms_fraud_corrup
tion/blob/main/df_politicians.csv

Pol
itic
ian
_ID

Fu
ll_
Na
m
e

Pos
itio
n

Pol
itic
al_
Par
ty

Acti
vity
_Pe
rio
d

Last_Y
ear_As
set_De
clarati
on

Last_Year
_Asset_In
crease_P
ercentag
e

Dona
tions
_Rec
eive
d

Cam
paig
n_Ex
pens
es

Bu
sin
ess
_Ti
es

Previ
ous_
Com
plain
ts

Is_
Su
spi
cio
us

0 1

Cy
nt
hi
a
M
ed
in
a

Rep
res
ent
ativ
e

Car
e
Par
ty

201
9-
202
0

81617
93.09 0.2

4523
3.93

7089
0.02 Yes 0 0

1 2

A
pr
il

Ma
yor

Or
der

201
9-

50169
35.53 0.4

1051
37.9
9

2084
66.4
7 No 1 0

https://github.com/Viny2030/algorithms_fraud_corruption/blob/main/df_politicians.csv
https://github.com/Viny2030/algorithms_fraud_corruption/blob/main/df_politicians.csv

145

Fit
zg
er
al
d

Par
ty

202
4

2 3

Ge
or
ge
W
illi
a
m
s

Ma
yor

Lik
e
Par
ty

202
0-
202
2

58775
79.06 0.4

4041
6.75

4876
5.39 Yes 1 1

3 4

Na
nc
y
De
an

Min
iste
r

Att
orn
ey
Par
ty

202
1-
202
5

97675
41.79 0.2

9548
2.42

2770
2.16 Yes 2 0

4 5

Ki
m
be
rl
y
Le
st
er

Rep
res
ent
ativ
e

Ne
ar
Par
ty

202
0-
202
3

72333
55.25 0.4

1412
62.0
3

4398
9.04

De
cla
red 2 0

5 6

M
ar
ga
re
t
Ch
an
g

Min
iste
r

Tru
th
Par
ty

201
8-
202
4

69849
50.54 0.2

3349
3.21

1372
78.1
6 Yes 0 0

Dataset Explanation: Political Figures and

Suspicion Indicators

This dataset simulates information related to political
figures, aiming to provide features that could
potentially indicate suspicious activity, particularly in
the context of financial irregularities or potential
corruption. Each row represents a single political
individual.

146

Here's a breakdown of each column:

• Politician_ID:
o Description: A unique numerical

identifier assigned to each political
figure in the dataset.

o Type: Integer.
o Example: 1, 2, 30.

• Full_Name:
o Description: The full name of the

political figure. This is a randomly
generated name for simulation
purposes.

o Type: String.
o Example: Cynthia Medina, April

Fitzgerald, Robert Williams.
• Position:

o Description: The political office or role
held by the individual.

o Type: Categorical String.
o Possible Values: Representative,

Senator, Minister, Mayor, Councilor.
o Example: Representative, Mayor,

Minister.
• Political_Party:

o Description: The political party the
individual is affiliated with. These are
randomly generated party names.

o Type: String.
o Example: Care Party, Order Party,

Attorney Party.
• Activity_Period:

o Description: The period (start year -
end year) during which the politician was
active or held their position.

o Type: String (formatted as "YYYY-
YYYY").

o Example: 2019-2020, 2021-2025.
• Last_Year_Asset_Declaration:

147

o Description: The declared total value of
assets for the politician in their last
recorded declaration. This is a simulated
financial value.

o Type: Float.
o Example: 8161793.09, 5016935.53,

7390223.28.
• Last_Year_Asset_Increase_Percentage:

o Description: The percentage increase
in the politician's declared assets over
the last year. This is a key indicator for
potential financial irregularities.

o Type: Float (representing a percentage,
e.g., 0.2 means 20%).

o Example: 0.24, 0.4, 0.33.
• Donations_Received:

o Description: The total amount of
donations received by the politician,
potentially for campaigns or personal
funds.

o Type: Float.
o Example: 5233.93, 105137.99,

37900.59.
• Campaign_Expenses:

o Description: The total expenses
declared for political campaigns. This
can be compared with donations to find
imbalances.

o Type: Float.
o Example: 70890.02, 208466.47,

33382.45.
• Business_Ties:

o Description: Indicates whether the
politician has declared business
affiliations or ties that could present
conflicts of interest.

o Type: Categorical String.
o Possible Values: Yes, No, Declared,

Undisclosed (the code adds

148

'Undisclosed' for simulated suspicious
cases).

o Example: Yes, No, Declared.
• Previous_Complaints:

o Description: The number of previous
complaints or allegations filed against
the politician. A higher number could
indicate a pattern of questionable
conduct.

o Type: Integer.
o Example: 0, 1, 2.

• Is_Suspicious:
o Description: The target variable. This

binary flag indicates whether the
politician is considered suspicious
based on predefined rules or simulated
patterns of corruption. This is the
variable that the machine learning
model aims to predict.

o Type: Binary Integer.
o Possible Values: 0 (Not Suspicious), 1

(Suspicious).
o Example: 0, 1.

This dataset is synthetic, meaning it was artificially
generated to simulate realistic data patterns for
training and testing a fraud/corruption detection
system. It's not based on real-world individuals or
events.

Code:

The reader can access the algorithm in the

author's repository:

https://github.com/Viny2030/algorithms_fraud_co

rruption/blob/main/fraud.ipynb

https://github.com/Viny2030/algorithms_fraud_corruption/blob/main/fraud.ipynb
https://github.com/Viny2030/algorithms_fraud_corruption/blob/main/fraud.ipynb

149

import random

from faker import Faker

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import

train_test_split

from sklearn.ensemble import

RandomForestClassifier

from sklearn.preprocessing import

LabelEncoder, StandardScaler

from sklearn.metrics import

classification_report, accuracy_score,

confusion_matrix

import warnings

warnings.filterwarnings('ignore') # Suppress

warnings for cleaner output

Set a random seed for reproducibility

np.random.seed(42)

random.seed(42)

--- NEW: Load the dataset directly from

GitHub ---

print("Loading df_politicians.csv from

GitHub...")

github_url =

'https://raw.githubusercontent.com/Viny2030/

algorithms_fraud_corruption/main/df_politici

ans.csv'

try:

 df_politicians = pd.read_csv(github_url)

 print("Dataset loaded successfully.")

 print("Initial DataFrame head:")

 print(df_politicians.head())

150

 print(f"Dataset has

{len(df_politicians)} rows and

{len(df_politicians.columns)} columns.")

 # Convert 'Last_Year_Asset_Declaration'

to numeric, handling potential errors

 df_politicians['Last_Year_Asset_Declarat

ion'] =

pd.to_numeric(df_politicians['Last_Year_Asse

t_Declaration'], errors='coerce')

 # Fill any NaNs that resulted from

conversion errors (e.g., if there were non-

numeric strings)

 df_politicians['Last_Year_Asset_Declarat

ion'] =

df_politicians['Last_Year_Asset_Declaration'

].fillna(0)

 # Ensure 'Is_Suspicious' column exists.

If not, initialize it to 0.

 # If the CSV already contains it, this

won't change anything.

 if 'Is_Suspicious' not in

df_politicians.columns:

 df_politicians['Is_Suspicious'] = 0

 print(" 'Is_Suspicious' column not

found in CSV. Initialized to 0. ")

 # You might need to add rules here

to define 'Is_Suspicious' based on other

columns in the loaded data

 # For example, if 'Is_Suspicious'

should be derived from other columns in the

loaded CSV:

 # df_politicians['Is_Suspicious'] =

np.where(

 # (df_politicians['Last_Year_Ass

et_Increase_Percentage'] > 0.15) &

151

 # (df_politicians['Business_Ties

'] == 'Yes'),

 # 1,

 # 0

 #)

 # print(" 'Is_Suspicious' column

created based on example rules.")

 else:

 # Ensure 'Is_Suspicious' is integer

type

 df_politicians['Is_Suspicious'] =

df_politicians['Is_Suspicious'].astype(int)

except Exception as e:

 print(f"Error loading dataset from

{github_url}: {e}")

 print("Proceeding with simulated data

generation as a fallback.")

 # If loading fails, fallback to your

original data generation code

 num_politicians = 55 # Number of

politicians in the simulated dataset

 amounts = np.random.uniform(5000,

10000000, num_politicians)

 formatted_amounts = [f"{amount:.2f}" for

amount in amounts]

 political_data = {

 'Politician_ID': range(1,

num_politicians + 1),

 'Full_Name': [fake.name() for _ in

range(num_politicians)],

 'Position':

[random.choice(['Representative', 'Senator',

'Minister', 'Mayor', 'Councilor']) for _ in

range(num_politicians)],

152

 'Political_Party':

[fake.word().capitalize() + ' Party' for _

in range(num_politicians)],

 'Activity_Period':

[f"{random.randint(2018, 2024)}-

{random.randint(2020, 2025)}" for _ in

range(num_politicians)],

 'Last_Year_Asset_Declaration':

formatted_amounts,

 'Last_Year_Asset_Increase_Percentage

': np.random.choice([0.05, 0.10, 0.15, 0.20,

0.25], num_politicians),

 'Donations_Received':

np.round(np.random.uniform(0, 150000,

num_politicians), 2),

 'Campaign_Expenses':

np.round(np.random.uniform(10000, 250000,

num_politicians), 2),

 'Business_Ties':

[random.choice(['Yes', 'No', 'Declared'])

for _ in range(num_politicians)],

 'Previous_Complaints':

np.random.randint(0, 3, num_politicians),

 'Is_Suspicious':

np.zeros(num_politicians, dtype=int)

 }

 df_politicians =

pd.DataFrame(political_data)

 # Apply initial rule-based suspicion

 df_politicians['Is_Suspicious'] =

np.where(

 (df_politicians['Last_Year_Asset_Inc

rease_Percentage'] > 0.10) &

 (df_politicians['Business_Ties'] ==

'Yes') &

153

 (df_politicians['Previous_Complaints

'] == 1),

 1,

 0

)

 # Simulate additional Suspicious Cases

 num_suspicious_to_add =

int(num_politicians * 0.15)

 non_suspicious_indices =

df_politicians[df_politicians['Is_Suspicious

'] == 0].index

 num_suspicious_to_add =

min(num_suspicious_to_add,

len(non_suspicious_indices))

 suspicious_indices =

np.random.choice(non_suspicious_indices,

num_suspicious_to_add, replace=False)

 df_politicians.loc[suspicious_indices,

'Is_Suspicious'] = 1

 for idx in suspicious_indices:

 if random.random() < 0.4:

 df_politicians.loc[idx,

'Last_Year_Asset_Increase_Percentage'] =

np.random.uniform(0.20, 0.60)

 df_politicians.loc[idx,

'Last_Year_Asset_Declaration'] =

str(float(df_politicians.loc[idx,

'Last_Year_Asset_Declaration']) *

np.random.uniform(1.2, 1.5))

 if random.random() < 0.3:

 df_politicians.loc[idx,

'Donations_Received'] =

np.random.uniform(100000, 300000)

154

 df_politicians.loc[idx,

'Campaign_Expenses'] =

np.random.uniform(5000, 50000)

 if random.random() < 0.3:

 df_politicians.loc[idx,

'Business_Ties'] = 'Undisclosed'

 if random.random() < 0.2:

 df_politicians.loc[idx,

'Previous_Complaints'] = random.randint(2,

5)

 if random.random() < 0.1:

 if df_politicians.loc[idx,

'Position'] in ['Minister', 'Senator',

'Mayor']:

 df_politicians.loc[idx,

'Last_Year_Asset_Increase_Percentage'] *=

random.uniform(2.5, 4.0)

 df_politicians['Last_Year_Asset_Declarat

ion'] =

df_politicians['Last_Year_Asset_Declaration'

].astype(float)

 print("Simulated data generated as

fallback.")

 print("Simulated DataFrame head:")

 print(df_politicians.head())

--- Continue with Feature Engineering

(from original code, adapted for loaded

data) ---

3. Feature Engineering

a) Ratio of Asset Increase Percentage to

Total Assets (e.g., disproportionate

increase relative to total wealth)

155

Add a small epsilon (1e-6) to the

denominator to prevent division by zero for

assets close to zero

df_politicians['Asset_Increase_Ratio'] =

df_politicians['Last_Year_Asset_Increase_Per

centage'] /

(df_politicians['Last_Year_Asset_Declaration

'] + 1e-6)

b) Ratio of Campaign Expenses to Donations

(e.g., very low expenses despite high

donations could be suspicious)

Add a small epsilon (1e-6) to the

denominator to prevent division by zero for

zero donations

df_politicians['Expenses_Donations_Ratio'] =

df_politicians['Campaign_Expenses'] /

(df_politicians['Donations_Received'] + 1e-

6)

c) Binary flag: Is there a High Asset

Increase (based on a threshold)?

high_increase_amount_threshold = 150000 #

Define a threshold for what constitutes a

"high" amount increase

df_politicians['Is_High_Asset_Increase_Amoun

t'] =

(df_politicians['Last_Year_Asset_Increase_Pe

rcentage'] *

df_politicians['Last_Year_Asset_Declaration'

] >

high_increase_amount_threshold).astype(int)

d) Binary flag: Are there Many Previous

Complaints (based on a threshold)?

many_complaints_threshold = 1 # More than 1

complaint is considered "many"

156

df_politicians['Has_Many_Complaints'] =

(df_politicians['Previous_Complaints'] >

many_complaints_threshold).astype(int)

e) Encode categorical variables using

LabelEncoder

'Position'

le_position = LabelEncoder()

df_politicians['Position_Encoded'] =

le_position.fit_transform(df_politicians['Po

sition'])

'Political_Party'

le_party = LabelEncoder()

df_politicians['Political_Party_Encoded'] =

le_party.fit_transform(df_politicians['Polit

ical_Party'])

'Business_Ties' - including 'Undisclosed'

as a category

le_business_ties = LabelEncoder()

df_politicians['Business_Ties_Encoded'] =

le_business_ties.fit_transform(df_politician

s['Business_Ties'])

4. Feature Selection and Data Preparation

Define the features (independent

variables, X) that the model will use for

prediction

features = ['Last_Year_Asset_Declaration',

'Last_Year_Asset_Increase_Percentage',

 'Donations_Received',

'Campaign_Expenses', 'Asset_Increase_Ratio',

 'Expenses_Donations_Ratio',

'Is_High_Asset_Increase_Amount',

'Has_Many_Complaints',

157

 'Position_Encoded',

'Political_Party_Encoded',

'Business_Ties_Encoded']

X = df_politicians[features]

Define the target variable (dependent

variable, y) which is 'Is_Suspicious'

y = df_politicians['Is_Suspicious']

Handle any potential missing values by

filling them with 0 (or a suitable strategy)

X = X.fillna(0)

Check if target variable has at least two

classes

if len(y.unique()) < 2:

 print("\nSkipping model training and

evaluation: 'Is_Suspicious' has less than 2

unique classes. Cannot perform

classification.")

 print("This might happen if the loaded

dataset doesn't have fraudulent cases or if

the rules to define 'Is_Suspicious' (if

initialized) didn't create any.")

else:

 # 5. Split Data into Training and Test

Sets

 # Stratify by 'Is_Suspicious' to ensure

similar proportions of suspicious/non-

suspicious cases

 # in both training and test sets, which

is crucial for imbalanced datasets.

 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.3,

random_state=42, stratify=y)

 # 6. Feature Scaling

158

 # StandardScaler standardizes features

by removing the mean and scaling to unit

variance.

 # This is important for many machine

learning algorithms to perform optimally.

 scaler = StandardScaler()

 X_train_scaled =

scaler.fit_transform(X_train) # Fit on

training data and transform it

 X_test_scaled =

scaler.transform(X_test) # Transform

test data using the same scaler fitted on

training data

 # 7. Train the Classification Model

(Random Forest)

 print("\n7. Training the Model for

Political Corruption Detection (Random

Forest):")

 model =

RandomForestClassifier(random_state=42) #

Initialize the Random Forest Classifier

 model.fit(X_train_scaled,

y_train) # Train the model

 y_pred =

model.predict(X_test_scaled) #

Make predictions on the scaled test set

 # 8. Evaluate the Model

 print("\n8. Model Evaluation:")

 print("Model Accuracy:",

accuracy_score(y_test, y_pred)) # Calculate

overall accuracy

 # Generate a detailed classification

report including precision, recall, f1-score

 print("\nClassification Report:\n",

classification_report(y_test, y_pred,

159

target_names=['Not Suspicious',

'Suspicious']))

 # Compute the confusion matrix to

understand prediction errors

 print("\nConfusion Matrix:\n",

confusion_matrix(y_test, y_pred))

 # 9. Analyze Politicians Detected as

Suspicious

 # Create a copy of the test set rows

from the original DataFrame

 df_test_results =

df_politicians.loc[X_test.index].copy()

 df_test_results['Prediction_Suspicious']

= y_pred # Add the model's predictions to

this DataFrame

 # Filter for politicians that the model

predicted as suspicious

 suspicious_politicians =

df_test_results[df_test_results['Prediction_

Suspicious'] == 1][

 ['Politician_ID', 'Full_Name',

'Position', 'Political_Party',

'Last_Year_Asset_Declaration',

 'Last_Year_Asset_Increase_Percentag

e', 'Donations_Received',

'Campaign_Expenses',

 'Business_Ties',

'Previous_Complaints', 'Is_Suspicious',

'Prediction_Suspicious']

]

 print("\n9. Politicians Detected as

Potentially Suspicious by the System:")

 print(suspicious_politicians)

 # 10. Feature Importance Analysis

160

 print("\n10. Feature Importance (from

RandomForestClassifier):")

 if hasattr(model,

'feature_importances_'): # Check if the

model has feature_importances_ attribute

 feature_importances =

pd.DataFrame({'Feature': features,

'Importance': model.feature_importances_})

 feature_importances =

feature_importances.sort_values(by='Importan

ce', ascending=False)

 print(feature_importances)

 # --- Plotting Feature Importance --

-

 plt.figure(figsize=(10, 7))

 sns.barplot(x='Importance',

y='Feature', data=feature_importances,

palette='viridis')

 plt.title('Feature Importance for

Political Corruption Detection',

fontsize=16)

 plt.xlabel('Importance Score',

fontsize=12)

 plt.ylabel('Feature', fontsize=12)

 plt.grid(axis='x', linestyle='--',

alpha=0.7)

 plt.tight_layout()

 plt.show()

 # 11. Visualizations for Data

Exploration and Model Insights

 # --- Plot 1: Distribution of

'Is_Suspicious' (Target Variable) ---

 plt.figure(figsize=(7, 6))

161

 sns.countplot(x='Is_Suspicious',

data=df_politicians, palette='cividis')

 plt.title('Distribution of Suspicious

vs. Non-Suspicious Cases', fontsize=16)

 plt.xlabel('Suspicious Status (0: Not

Suspicious, 1: Suspicious)', fontsize=12)

 plt.ylabel('Number of Politicians',

fontsize=12)

 plt.xticks([0, 1], ['Not Suspicious',

'Suspicious'], fontsize=10)

 plt.yticks(fontsize=10)

 plt.grid(axis='y', linestyle='--',

alpha=0.7)

 plt.tight_layout()

 plt.show()

 # --- Plot 2: Distribution of key

numerical features by 'Is_Suspicious' ---

 # Helps to visually identify patterns

where suspicious cases differ from non-

suspicious ones

 numerical_features_to_plot = [

 'Last_Year_Asset_Increase_Percentage

',

 'Donations_Received',

 'Campaign_Expenses',

 'Previous_Complaints',

 'Asset_Increase_Ratio',

 'Expenses_Donations_Ratio'

]

 for feature in

numerical_features_to_plot:

 plt.figure(figsize=(10, 6))

 sns.histplot(data=df_politicians,

x=feature, hue='Is_Suspicious', kde=True,

162

 palette={0: 'skyblue',

1: 'salmon'},

 stat='density',

common_norm=False, bins=20)

 plt.title(f'Distribution of

{feature} by Suspicious Status',

fontsize=16)

 plt.xlabel(feature, fontsize=12)

 plt.ylabel('Density', fontsize=12)

 plt.legend(title='Is Suspicious',

labels=['Not Suspicious', 'Suspicious'])

 plt.tight_layout()

 plt.show()

 # --- Plot 3: Confusion Matrix Heatmap -

--

 cm = confusion_matrix(y_test, y_pred)

 plt.figure(figsize=(8, 7))

 sns.heatmap(cm, annot=True, fmt='d',

cmap='Blues', cbar=False, linewidths=.5,

linecolor='black',

 xticklabels=['Predicted Not

Suspicious', 'Predicted Suspicious'],

 yticklabels=['True Not

Suspicious', 'True Suspicious'])

 plt.title('Confusion Matrix of Political

Corruption Detection', fontsize=16)

 plt.xlabel('Predicted Label',

fontsize=12)

 plt.ylabel('True Label', fontsize=12)

 plt.xticks(fontsize=10)

 plt.yticks(fontsize=10, rotation=0)

 plt.tight_layout()

 plt.show()

Save the final DataFrame to a CSV file

(optional)

163

csv_file_name =

'df_politicians_processed.csv'

df_politicians.to_csv(csv_file_name,

index=False)

print(f"\nFinal processed DataFrame saved to

'{csv_file_name}'")

Display the first few rows of the

processed DataFrame to check features

print("\nFirst 5 rows of the processed

DataFrame:")

print(df_politicians.head())

output:

Loading df_politicians.csv from GitHub...

Dataset loaded successfully.

Initial DataFrame head:

 Politician_ID Full_Name

Position Political_Party \

0 1 Cynthia Medina

Representative Care Party

1 2 April Fitzgerald

Mayor Order Party

2 3 George Williams

Mayor Like Party

3 4 Nancy Dean

Minister Attorney Party

4 5 Kimberly Lester

Representative Near Party

 Activity_Period Last_Year_Asset_Declaration

\

0 2019-2020 8161793.09

1 2019-2024 5016935.53

2 2020-2022 5877579.06

3 2021-2025 9767541.79

4 2020-2023 7233355.25

 Last_Year_Asset_Increase_Percentage

Donations_Received Campaign_Expenses \

0 0.2

45233.93 70890.02

1 0.4

105137.99 208466.47

164

2 0.4

40416.75 48765.39

3 0.2

95482.42 27702.16

4 0.4

141262.03 43989.04

 Business_Ties Previous_Complaints

Is_Suspicious

0 Yes 0

0

1 No 1

0

2 Yes 1

1

3 Yes 2

0

4 Declared 2

0

Dataset has 30 rows and 12 columns.

7. Training the Model for Political Corruption

Detection (Random Forest):

8. Model Evaluation:

Model Accuracy: 0.7777777777777778

Classification Report:

 precision recall f1-score

support

Not Suspicious 0.78 1.00 0.88

7

 Suspicious 0.00 0.00 0.00

2

 accuracy 0.78

9

 macro avg 0.39 0.50 0.44

9

 weighted avg 0.60 0.78 0.68

9

Confusion Matrix:

 [[7 0]

 [2 0]]

165

9. Politicians Detected as Potentially

Suspicious by the System:

Empty DataFrame

Columns: [Politician_ID, Full_Name, Position,

Political_Party, Last_Year_Asset_Declaration,

Last_Year_Asset_Increase_Percentage,

Donations_Received, Campaign_Expenses,

Business_Ties, Previous_Complaints,

Is_Suspicious, Prediction_Suspicious]

Index: []

10. Feature Importance (from

RandomForestClassifier):

 Feature

Importance

3 Campaign_Expenses

0.218453

8 Position_Encoded

0.122735

4 Asset_Increase_Ratio

0.105932

1 Last_Year_Asset_Increase_Percentage

0.099017

2 Donations_Received

0.097489

0 Last_Year_Asset_Declaration

0.093321

9 Political_Party_Encoded

0.084202

5 Expenses_Donations_Ratio

0.082759

10 Business_Ties_Encoded

0.078039

7 Has_Many_Complaints

0.011421

6 Is_High_Asset_Increase_Amount

0.006632

166

167

168

169

170

171

Final processed DataFrame saved to

'df_politicians_processed.csv'

First 5 rows of the processed DataFrame:

 Politician_ID Full_Name

Position Political_Party \

0 1 Cynthia Medina

Representative Care Party

1 2 April Fitzgerald

Mayor Order Party

2 3 George Williams

Mayor Like Party

172

3 4 Nancy Dean

Minister Attorney Party

4 5 Kimberly Lester

Representative Near Party

 Activity_Period Last_Year_Asset_Declaration

\

0 2019-2020 8161793.09

1 2019-2024 5016935.53

2 2020-2022 5877579.06

3 2021-2025 9767541.79

4 2020-2023 7233355.25

 Last_Year_Asset_Increase_Percentage

Donations_Received Campaign_Expenses \

0 0.2

45233.93 70890.02

1 0.4

105137.99 208466.47

2 0.4

40416.75 48765.39

3 0.2

95482.42 27702.16

4 0.4

141262.03 43989.04

 Business_Ties Previous_Complaints

Is_Suspicious Asset_Increase_Ratio \

0 Yes 0

0 2.450442e-08

1 No 1

0 7.972995e-08

2 Yes 1

1 6.805523e-08

3 Yes 2

0 2.047598e-08

4 Declared 2

0 5.529937e-08

 Expenses_Donations_Ratio

Is_High_Asset_Increase_Amount \

0 1.567187

1

1 1.982789

1

2 1.206564

1

173

3 0.290128

1

4 0.311400

1

 Has_Many_Complaints Position_Encoded

Political_Party_Encoded \

0 0 3

5

1 0 1

17

2 0 1

12

3 1 2

3

4 1 3

14

 Business_Ties_Encoded

0 2

1 1

2 2

3 2

4 0

Explanation:

Loading df_politicians.csv from GitHub... Dataset
loaded successfully. Initial DataFrame head:

This part confirms that the df_politicians.csv file was
successfully loaded from the specified GitHub URL. It
then displays the first few rows of the DataFrame,
showing the initial raw data with columns like
Politician_ID, Full_Name, Position,
Last_Year_Asset_Declaration, Is_Suspicious, etc.
This is a good sanity check to ensure the data has
been read correctly.

Dataset has 30 rows and 12 columns. This line
provides the dimensions of your loaded dataset,
indicating 30 individual politician records and 12
attributes for each.

174

7. Training the Model for Political Corruption
Detection (Random Forest): This indicates the
phase where the Random Forest classifier is being
trained on the preprocessed data.

8. Model Evaluation:

• Model Accuracy: 0.7777777777777778
o The overall accuracy of your Random

Forest model on the test set is
approximately 77.78%. This means that
roughly 78% of the model's predictions
(whether a politician is suspicious or not)
were correct on unseen data.

• Classification Report:
o This report provides a detailed

breakdown of the model's performance
for each class: "Not Suspicious" and
"Suspicious".

o Precision (Not Suspicious): 0.78
▪ When the model predicted a

politician was "Not Suspicious," it
was correct 78% of the time. This
is a reasonable precision.

o Recall (Not Suspicious): 1.00
▪ The model correctly identified

100% of all actual "Not
Suspicious" politicians. This is
excellent for this class, meaning
it didn't miss any truly non-
suspicious cases.

o F1-score (Not Suspicious): 0.88
▪ A high F1-score indicates a good

balance between precision and
recall for the "Not Suspicious"
class.

o Precision (Suspicious): 0.00
▪ When the model predicted a

politician was "Suspicious," it was

175

correct 0% of the time. This is a
very concerning result. It means
any time the model predicted
"Suspicious", it was wrong.

o Recall (Suspicious): 0.00
▪ The model correctly identified 0%

of all actual "Suspicious"
politicians. This is also very
concerning. It means the model
failed to catch any of the truly
suspicious cases.

o F1-score (Suspicious): 0.00
▪ An F1-score of 0 for the

"Suspicious" class confirms the
model's complete failure to
identify this class.

o Support:
▪ There were 7 actual "Not

Suspicious" politicians and 2
actual "Suspicious" politicians
in the test set. This highlights a
significant class imbalance in
your test data, where the
"Suspicious" class is the minority.

• Confusion Matrix:
o [[7 0]
o [2 0]]
o This matrix numerically illustrates the

model's predictions:
▪ True Negative (Top-Left): 7 -

The model correctly predicted 7
"Not Suspicious" politicians as
"Not Suspicious".

▪ False Positive (Top-Right): 0 -
The model incorrectly predicted 0
"Not Suspicious" politicians as
"Suspicious". (This aligns with
the 0.00 precision for the
"Suspicious" class).

176

▪ False Negative (Bottom-Left): 2
- The model incorrectly
predicted 2 "Suspicious"
politicians as "Not
Suspicious". These are the true
corruption cases that the model
missed.

▪ True Positive (Bottom-Right): 0
- The model correctly predicted
0 "Suspicious" politicians as
"Suspicious". (This aligns with
the 0.00 recall for the
"Suspicious" class).

Summary of Model Evaluation: While the overall
accuracy appears decent (78%), this is highly
misleading due to the class imbalance. The model
effectively became a "majority class predictor," simply
classifying almost everything as "Not Suspicious." It
completely failed to identify any of the actual
suspicious cases (Recall = 0.00 for "Suspicious"),
which is a critical failure for a fraud/corruption
detection system.

9. Politicians Detected as Potentially Suspicious
by the System: Empty DataFrame Columns: [...]
Index: []

This output directly confirms the model's failure in
detecting the "Suspicious" class. Since its recall for
"Suspicious" is 0, it means it didn't predict any
politician as suspicious, resulting in an empty list of
detected politicians. This is a direct consequence of
the model's inability to learn the patterns of the
minority class.

10. Feature Importance (from
RandomForestClassifier): This section indicates

177

which features the Random Forest model considered
most important for making its predictions.

• Campaign_Expenses (0.218): This is the
most important feature.

• Position_Encoded (0.123): The encoded
political position is also quite important.

• Asset_Increase_Ratio (0.106): The ratio of
asset increase to total assets is another
significant factor.

• Other features like
Last_Year_Asset_Increase_Percentage,
Donations_Received,
Last_Year_Asset_Declaration,
Political_Party_Encoded, and
Expenses_Donations_Ratio also contribute
notably.

• Has_Many_Complaints (0.011) and
Is_High_Asset_Increase_Amount (0.007):
These features have very low importance,
suggesting they were not very useful to the
model in this run.

Summary of Feature Importance: While the model
identified important features, it's crucial to remember
that despite these features being relevant, the model
as a whole failed to correctly classify the positive
(suspicious) class. The features are there, but the
model didn't learn how to use them effectively to flag
the minority class.

Final processed DataFrame saved to
'df_politicians_processed.csv' This confirms that
the DataFrame, including the new engineered
features, has been saved to a CSV file.

First 5 rows of the processed DataFrame: This
displays the head of the final DataFrame, showing the

178

original columns along with the newly created and
encoded features like Asset_Increase_Ratio,
Expenses_Donations_Ratio, Position_Encoded, etc.
This confirms the successful feature engineering
process.

Overall Conclusion:

The script successfully loaded the data and performed
feature engineering. However, the Random Forest
model, despite a seemingly decent overall accuracy,
completely failed to identify any of the truly
suspicious politicians. This is a severe issue for a
fraud/corruption detection system. The model
essentially learned to always predict "Not Suspicious"
because that's the majority class in the test set.

Recommendations:

1. Address Class Imbalance: The most critical
step is to apply resampling techniques (e.g.,
SMOTE for oversampling the minority class, or
Undersampling the majority class) during the
training phase. Stratified splitting helps with
test set representation, but training needs
techniques to make the model see more
examples of the minority class.

2. Hyperparameter Tuning: Further tuning of the
Random Forest classifier's hyperparameters
might improve its ability to learn from the
minority class (e.g., class_weight parameter,
n_estimators, max_depth).

3. Review Feature Engineering: While features
have importance, ensure they are truly
discriminatory for the minority class. You might

179

need to create more targeted features for
suspicious behavior.

4. Consider Anomaly Detection: For very rare
fraud cases, unsupervised anomaly detection
algorithms (like Isolation Forest, One-Class
SVM) might be more suitable than supervised
classification, as they don't require labeled
fraudulent examples for training.

This bar chart is titled "Feature Importance for Political
Corruption Detection." It visually represents the
relative importance of different features (variables)
that the Random Forest model used to predict political
corruption.

180

Here's a detailed explanation of the graph's
components:

• Title: "Feature Importance for Political
Corruption Detection": This clearly states the
purpose of the plot: to show which factors are
most influential in the model's ability to identify
potentially corrupt politicians.

• Y-axis: 'Feature': This axis lists the names of
the input variables (features) that were fed into
the Random Forest model. These features
were derived from the df_politicians dataset,
some being raw data points and others being
engineered from the raw data (like ratios or
encoded categorical variables).

• X-axis: 'Importance Score': This axis
represents the numerical importance score
assigned to each feature by the Random
Forest algorithm. In Random Forests, feature
importance is typically calculated by measuring
the average reduction in impurity (e.g., Gini
impurity or entropy) that each feature
contributes across all the decision trees within
the forest. A higher score means the feature
played a more significant role in making
accurate predictions.

• Horizontal Bars: Each bar corresponds to one
of the features. The length of the bar directly
indicates its importance score. The features
are sorted in descending order of
importance, meaning the most influential
features are at the top of the chart.

• Color Gradient: The bars are colored using a
gradient (from deep purple to various shades of
green and yellow). This is often used for visual
appeal and to subtly convey a sense of
decreasing importance.

Interpretation of the Plot:

181

The plot provides critical insights into which aspects of
a politician's profile the model considered most
relevant for detecting corruption.

1. Top Features (Most Important):
o Campaign_Expenses: This is the most

important feature, with the longest bar
(around 0.21 importance). This
suggests that the level or patterns of
campaign expenses are a primary
indicator of potential corruption.

o Position_Encoded: The encoded
representation of a politician's position
(e.g., Representative, Mayor, Minister)
is the second most important. This
implies that certain political positions
inherently carry more risk or are
associated with patterns of corruption.

o Asset_Increase_Ratio: The ratio of a
politician's asset increase to their total
assets is also highly important. A
disproportionate increase in wealth
relative to existing assets is a strong
signal.

o Last_Year_Asset_Increase_Percenta
ge: The raw percentage increase in
assets from the previous year is also a
significant factor, closely related to the
asset increase ratio.

2. Mid-Range Importance Features:
o Donations_Received: The amount of

donations received plays a notable role.
o Last_Year_Asset_Declaration: The

declared asset value from the previous
year.

o Political_Party_Encoded: The political
party affiliation also contributes to the
prediction.

182

o Expenses_Donations_Ratio: The ratio
of campaign expenses to donations
received.

o Business_Ties_Encoded: Whether a
politician has (encoded) business ties.

3. Least Important Features (Lowest
Importance):

o Has_Many_Complaints: This feature,
indicating if a politician has many
previous complaints, has very low
importance.

o Is_High_Asset_Increase_Amount: A
binary flag for a high absolute asset
increase amount also shows minimal
importance.

Overall Conclusion from Feature Importance:

The model for political corruption detection primarily
relies on financial indicators (campaign expenses,
asset increase, donations, asset declaration) and
positional/affiliation details (Position_Encoded,
Political_Party_Encoded) to make its predictions.
Features related to the number of complaints or binary
flags for high asset increases were found to be less
impactful in this specific model. This analysis is crucial
for understanding the model's logic and can guide
further data collection or investigative efforts towards
the most salient indicators of corruption.

183

This bar chart is titled "Distribution of Suspicious vs.
Non-Suspicious Cases" and it shows the counts of
politicians categorized by their suspicious status in
your dataset. This plot provides a quick and clear
overview of the class distribution of your target
variable (Is_Suspicious).

Here's a breakdown of the graph's components:

• Title: "Distribution of Suspicious vs. Non-
Suspicious Cases": This clearly indicates that

184

the graph is illustrating how many politicians fall
into each category of suspiciousness.

• X-axis: 'Suspicious Status (0: Not
Suspicious, 1: Suspicious)': This axis
represents the two classes of your target
variable:

o 'Not Suspicious': Corresponding to
Is_Suspicious = 0.

o 'Suspicious': Corresponding to
Is_Suspicious = 1.

• Y-axis: 'Number of Politicians': This axis
indicates the count of politicians for each
respective status.

• Bars:
o 'Not Suspicious' Bar (Dark

Grey/Blue): This bar is significantly
taller, reaching a count of approximately
24 politicians. This means that the
majority of politicians in your dataset are
labeled as "Not Suspicious".

o 'Suspicious' Bar (Light Brown/Khaki):
This bar is much shorter, reaching a
count of approximately 6 politicians.
This means a smaller number of
politicians in your dataset are labeled as
"Suspicious".

• Horizontal Dashed Gridlines: These lines
help in accurately reading the counts from the
Y-axis.

Interpretation of the Plot:

The most important takeaway from this graph is the
class imbalance in your dataset:

• There are approximately 4 times more 'Not
Suspicious' politicians (24) than
'Suspicious' politicians (6).

185

This imbalance is a crucial factor in machine learning,
especially for classification tasks like fraud or
corruption detection. When a model is trained on
imbalanced data, it might learn to predict the majority
class more frequently because it's the "safer"
prediction to maximize overall accuracy. As seen in
your previous model's output, an imbalanced dataset
can lead to high overall accuracy while completely
failing to identify the minority (suspicious) class.

This visualization effectively highlights why strategies
like resampling (oversampling the minority class or
undersampling the majority class) or using specific
evaluation metrics (like precision, recall, F1-score for
the minority class) are critical when dealing with such
datasets.

This histogram is titled "Distribution of
Last_Year_Asset_Increase_Percentage by

186

Suspicious Status." It displays the distribution of the
'Last_Year_Asset_Increase_Percentage' for
politicians, separated and stacked by their 'Is
Suspicious' status.

Here's a breakdown of the graph's components:

• Title: "Distribution of
Last_Year_Asset_Increase_Percentage by
Suspicious Status": This indicates the
primary focus of the plot: to examine how the
percentage increase in assets relates to a
politician's suspicious status.

• X-axis:
'Last_Year_Asset_Increase_Percentage':
This axis represents the percentage increase in
a politician's assets from the previous year. The
values range from approximately 0.10 to 0.40
(10% to 40%).

• Y-axis: 'Density': In this context, 'Density' on
the y-axis for a histogram means that the area
of the bars sums to 1. This is useful when
comparing distributions of different sizes (e.g.,
the "Suspicious" vs. "Not Suspicious" groups).

• Bars (Histograms): The bars are stacked to
show the counts for each Is_Suspicious
category within specific ranges (bins) of the
asset increase percentage.

o Light Gray/Blue (Bottom part of
stacked bars) for Is Suspicious = 0
(Not Suspicious): These parts of the
bars represent the density of Not
Suspicious politicians.

o Light Red/Orange (Top part of
stacked bars) for Is Suspicious = 1
(Suspicious): These parts of the bars
represent the density of Suspicious
politicians.

187

• KDE (Kernel Density Estimate) Lines: The
smooth curves overlaid on the histograms
represent the estimated probability density
functions for each Is_Suspicious group.

o Reddish Curve: Represents the density
distribution for Is Suspicious = 0 (Not
Suspicious politicians).

o Light Blue Curve: Represents the
density distribution for Is Suspicious = 1
(Suspicious politicians).

• Legend: 'Is Suspicious': Indicates which
color/line corresponds to which status (Not
Suspicious or Suspicious).

Interpretation of the Plot:

This graph helps determine if
'Last_Year_Asset_Increase_Percentage' is a useful

188

feature for distinguishing between suspicious and
non-suspicious politicians.

1. Distribution of "Not Suspicious"
(Red/Gray):

o The "Not Suspicious" politicians (red line
and gray bars) are primarily
concentrated at lower asset increase
percentages, specifically around 0.10
(10%) and 0.20 (20%). There's also a
peak at 0.40.

o The red KDE curve shows that most
non-suspicious politicians have a lower
asset increase, with fewer instances as
the percentage increases.

2. Distribution of "Suspicious" (Light Blue):
o The "Suspicious" politicians (light blue

line and light red/orange stacked bars)
show a different pattern. There's a
notable concentration at higher asset
increase percentages, particularly
around 0.30 (30%) and 0.40 (40%).

o The light blue KDE curve suggests a
broader distribution across higher
percentages, with peaks at 0.20, 0.30,
and 0.40.

3. Overlap and Separation:
o While there is overlap, especially

around the 0.20 (20%) mark where both
groups are present, there appears to be
some separation at the higher end.
The presence of a significant number of
suspicious cases at 0.30 and 0.40,
where non-suspicious cases are less
prevalent (or where the light blue curve
is higher than the red curve), suggests
that a very high asset increase
percentage could be an indicator of
suspicious activity.

189

o Conversely, at the 0.10 mark, there are
significantly more non-suspicious
cases.

In conclusion:
'Last_Year_Asset_Increase_Percentage' appears to
be a discriminatory feature. Politicians with a higher
percentage increase in their assets are more likely to
be classified as suspicious. This visual insight aligns
with the intuitive understanding that unusual wealth
accumulation could be a sign of corruption.

This histogram is titled "Distribution of
Donations_Received by Suspicious Status." It
illustrates the distribution of the 'Donations_Received'
amount for politicians, differentiated and stacked by
their 'Is Suspicious' status.

Here's a breakdown of the graph's components:

• Title: "Distribution of Donations_Received
by Suspicious Status": This indicates the
chart's purpose: to show how the amount of
donations received by a politician relates to
their suspicious status.

• X-axis: 'Donations_Received': This axis
represents the monetary value of donations
received. The range spans from approximately
0 to 150,000.

• Y-axis: 'Density': In a density histogram, the
y-axis represents the probability density,
meaning the area under the curves (and within
the bars) for each group sums to 1. This allows
for fair comparison of distributions even if the
groups have different total counts.

• Bars (Histograms): The bars are stacked to
show the counts for each Is_Suspicious

190

category within specific ranges (bins) of
donations received.

o Light Gray/Blue (Bottom part of
stacked bars) for Is Suspicious = 0
(Not Suspicious): These portions of the
bars represent the density contribution
of Not Suspicious politicians.

o Light Red/Orange (Top part of
stacked bars) for Is Suspicious = 1
(Suspicious): These portions of the
bars represent the density contribution
of Suspicious politicians.

• KDE (Kernel Density Estimate) Lines: The
smooth curves overlaid on the histograms
represent the estimated probability density
functions for each Is_Suspicious group.

o Reddish Curve: Shows the density
distribution for Is Suspicious = 0 (Not
Suspicious politicians).

o Light Blue Curve: Shows the density
distribution for Is Suspicious = 1
(Suspicious politicians).

• Legend: 'Is Suspicious': Explains which
color/line corresponds to which status (Not
Suspicious or Suspicious).

Interpretation of the Plot:

This graph helps assess whether the amount of
'Donations_Received' is a good indicator for
distinguishing between suspicious and non-
suspicious politicians.

1. Distribution of "Not Suspicious"
(Red/Gray):

o The "Not Suspicious" politicians (red line
and gray bars) show peaks at various
donation amounts, notably around the

191

60,000-70,000 range and also around
the 80,000-90,000 range, and a peak
around 140,000. The red KDE curve
suggests a somewhat broader, flatter
distribution for non-suspicious cases.

2. Distribution of "Suspicious" (Light Blue):
o The "Suspicious" politicians (light blue

line and light red/orange stacked bars)
also have a spread across the donation
amounts. There appears to be some
concentration in the lower ranges
(around 30,000-40,000), and again
around 60,000-70,000, and a final peak
around 130,000-140,000. The light blue
KDE curve indicates a more varied
distribution for suspicious cases.

3. Overlap and Separation:
o There is a significant overlap between

the 'Donations_Received' distributions
for both suspicious and non-suspicious
politicians across the entire range. Both
types of politicians receive donations in
similar magnitudes, with no clear
segment of donations exclusively
associated with one status.

o For example, while there are many non-
suspicious politicians with donations in
the 60,000-70,000 range, there are also
a good number of suspicious ones in
that same range.

o The peaks in the light red/orange
stacked bars (suspicious) often align
with peaks in the light gray/blue bars
(non-suspicious).

In conclusion: While 'Donations_Received' is a
feature considered by the model, this graph suggests
it's not a strong standalone discriminator for
identifying suspicious politicians. Both suspicious and

192

non-suspicious politicians receive similar amounts of
donations, meaning this feature alone might not
provide clear boundaries for classification. It likely
contributes to the model's decision-making in
combination with other features, rather than by
showing a distinct pattern on its own.

This histogram is titled "Distribution of
Campaign_Expenses by Suspicious Status." It
illustrates the distribution of 'Campaign_Expenses' for
politicians, separated and stacked by their 'Is
Suspicious' status.

Here's a breakdown of the graph's components:

• Title: "Distribution of Campaign_Expenses
by Suspicious Status": This indicates the
chart's purpose: to show how the amount spent

193

on campaign expenses by a politician relates to
their suspicious status.

• X-axis: 'Campaign_Expenses': This axis
represents the monetary value of campaign
expenses. The range appears to span from
approximately 25,000 to 250,000.

• Y-axis: 'Density': In a density histogram, the
y-axis represents the probability density. This
means the area under the curves (and within
the bars) for each group sums to 1. This allows
for fair comparison of distributions even if the
groups have different total counts.

• Bars (Histograms): The bars are stacked to
show the counts for each Is_Suspicious
category within specific ranges (bins) of
campaign expenses.

o Light Gray/Blue (Bottom part of
stacked bars) for Is Suspicious = 0
(Not Suspicious): These portions of the
bars represent the density contribution
of Not Suspicious politicians.

o Light Red/Orange (Top part of
stacked bars) for Is Suspicious = 1
(Suspicious): These portions of the
bars represent the density contribution
of Suspicious politicians.

• KDE (Kernel Density Estimate) Lines: The
smooth curves overlaid on the histograms
represent the estimated probability density
functions for each Is_Suspicious group.

o Reddish Curve: Shows the density
distribution for Is Suspicious = 0 (Not
Suspicious politicians).

o Light Blue Curve: Shows the density
distribution for Is Suspicious = 1
(Suspicious politicians).

• Legend: 'Is Suspicious': Explains which
color/line corresponds to which status (Not
Suspicious or Suspicious).

194

Interpretation of the Plot:

This graph helps assess whether the amount of
'Campaign_Expenses' is a useful feature for
distinguishing between suspicious and non-
suspicious politicians.

1. Distribution of "Not Suspicious"
(Red/Gray):

o The "Not Suspicious" politicians (red line
and gray bars) show a strong
concentration at higher campaign
expenses, particularly a large peak
around the 225,000-250,000 range.
There's also a notable presence around
125,000-150,000. The red KDE curve
broadly slopes downwards, suggesting
fewer non-suspicious cases as
expenses decrease.

2. Distribution of "Suspicious" (Light Blue):
o The "Suspicious" politicians (light blue

line and light red/orange stacked bars)
show a more varied distribution. There
are significant concentrations at lower
campaign expenses, particularly
around the 25,000-50,000 range and
also around 75,000-100,000. The light
blue KDE curve suggests multiple peaks
and a broader spread across lower-to-
mid expenses.

3. Overlap and Potential Separation:
o There is a clear distinction between

the primary peaks of the two
distributions. The highest density of
suspicious politicians occurs at
lower campaign expenses (e.g.,
around 25,000-50,000), while the
highest density of non-suspicious

195

politicians is at much higher expenses
(e.g., around 225,000-250,000).

o This suggests that unusually low
campaign expenses, especially when
combined with other factors, might
be indicative of suspicious activity,
possibly implying underreporting or
diversion of funds.

o Conversely, very high reported
campaign expenses seem to be more
characteristic of non-suspicious cases in
this dataset.

In conclusion: 'Campaign_Expenses' appears to be
a strong discriminatory feature. Lower campaign
expenses are more strongly associated with
suspicious politicians, while higher expenses are
more characteristic of non-suspicious ones. This
aligns with the understanding that a politician's
spending habits can be a key indicator of corruption.

196

This is a histogram titled "Distribution of
Previous_Complaints by Suspicious Status." It
displays the distribution of the number of
'Previous_Complaints' a politician has, broken down
and stacked by their 'Is Suspicious' status.

Here's a breakdown of the graph's components:

• Title: "Distribution of Previous_Complaints
by Suspicious Status": Indicates the purpose
of the plot: to show the relationship between the
number of previous complaints and a
politician's suspicious status.

• X-axis: 'Previous_Complaints': This axis
represents the count of previous complaints.
The visible values are 0, 1, and 2, indicating
that politicians in this dataset have either 0, 1,
or 2 (or more, grouped at 2) previous
complaints.

197

• Y-axis: 'Density': In a density histogram, the
y-axis represents the probability density,
meaning the area under the curves (and within
the bars) for each group sums to 1. This allows
for fair comparison of distributions even if the
groups have different total counts.

• Bars (Histograms): The bars are stacked to
show the density for each Is_Suspicious
category within specific integer values of
'Previous_Complaints'.

o Light Gray/Blue (Bottom part of
stacked bars) for Is Suspicious = 0
(Not Suspicious): These portions
represent the density of Not
Suspicious politicians.

o Light Red/Orange (Top part of
stacked bars) for Is Suspicious = 1
(Suspicious): These portions represent
the density of Suspicious politicians.

• KDE (Kernel Density Estimate) Lines: The
smooth curves overlaid on the histograms
represent the estimated probability density
functions for each Is_Suspicious group.

o Reddish Curve: Shows the density
distribution for Is Suspicious = 0 (Not
Suspicious politicians).

o Light Blue Curve: Shows the density
distribution for Is Suspicious = 1
(Suspicious politicians).

• Legend: 'Is Suspicious': Explains which
color/line corresponds to which status (Not
Suspicious or Suspicious).

Interpretation of the Plot:

This graph helps assess whether the number of
'Previous_Complaints' is a useful feature for
distinguishing between suspicious and non-
suspicious politicians.

198

1. Concentration at 1 Complaint:
o The tallest bar is at

'Previous_Complaints = 1', indicating
that a large number of politicians, both
suspicious and not suspicious, have
exactly one previous complaint.

o At this point, the stack is roughly split,
with slightly more suspicious (light
red/orange) than non-suspicious (light
gray/blue).

2. Zero Complaints:
o There's a significant bar at

'Previous_Complaints = 0'. Here, the bar
is predominantly light gray/blue (Not
Suspicious). This suggests that
politicians with no previous complaints
are more likely to be non-suspicious.

3. Two or More Complaints (at 2):
o There's a bar at 'Previous_Complaints =

2'. This bar is almost entirely light
red/orange (Suspicious). This is a
strong indicator: politicians with two or
more complaints are highly likely to be
suspicious.

4. KDE Curves:
o The light blue KDE curve (Suspicious)

has peaks at 1 and 2 complaints,
showing a higher density of suspicious
cases at these complaint counts.

o The reddish KDE curve (Not Suspicious)
has a peak at 0 and 1 complaint,
showing a higher density of non-
suspicious cases at 0 and 1 complaint.

In conclusion: 'Previous_Complaints' appears to be
a discriminatory feature, particularly at its
extremes. Politicians with no complaints are more
likely to be non-suspicious, while those with two or
more complaints are strongly associated with

199

being suspicious. The presence of one complaint is
less distinctive as both groups are found there. This
aligns with the expectation that a higher number of
past complaints would be a red flag for potential
corruption.

This histogram is titled "Distribution of
Asset_Increase_Ratio by Suspicious Status." It
displays the distribution of the 'Asset_Increase_Ratio'
for politicians, separated and stacked by their 'Is
Suspicious' status.

Here's a breakdown of the graph's components:

• Title: "Distribution of Asset_Increase_Ratio
by Suspicious Status": This indicates the
chart's purpose: to show how the ratio of asset
increase to total assets relates to a politician's
suspicious status.

200

• X-axis: 'Asset_Increase_Ratio': This axis
represents the calculated ratio of asset
increase. The values are very small, in the
order of 10^-6, meaning the increase is a tiny
fraction of the total assets. This is expected
given the definition of the ratio (percentage
increase divided by total asset amount).

• Y-axis: 'Density': In a density histogram, the
y-axis represents the probability density. The
area under the curves (and within the bars) for
each group sums to 1, which allows for fair
comparison of distributions.

• Bars (Histograms): The bars are stacked to
show the density for each Is_Suspicious
category within specific ranges (bins) of the
asset increase ratio.

o Light Gray/Blue (Bottom part of
stacked bars) for Is Suspicious = 0
(Not Suspicious): These portions
represent the density of Not
Suspicious politicians.

o Light Red/Orange (Top part of
stacked bars) for Is Suspicious = 1
(Suspicious): These portions represent
the density of Suspicious politicians.

• KDE (Kernel Density Estimate) Lines: The
smooth curves overlaid on the histograms
represent the estimated probability density
functions for each Is_Suspicious group.

o Reddish Curve: Shows the density
distribution for Is Suspicious = 0 (Not
Suspicious politicians).

o Light Blue Curve: Shows the density
distribution for Is Suspicious = 1
(Suspicious politicians).

• Legend: 'Is Suspicious': Explains which
color/line corresponds to which status (Not
Suspicious or Suspicious).

201

Interpretation of the Plot:

This graph helps assess whether the
'Asset_Increase_Ratio' is a useful feature for
distinguishing between suspicious and non-
suspicious politicians.

1. Concentration at Low Ratios:
o Both "Not Suspicious" (red/gray) and

"Suspicious" (light blue/orange)
politicians show a high density at very
low asset increase ratios, particularly
close to 0. This indicates that most
politicians, regardless of suspicious
status, have a very small asset increase
relative to their total assets. The light
blue KDE curve (Suspicious) has a very
high peak near 0, suggesting a strong
concentration of suspicious cases at
extremely low ratios.

2. Peaks in Suspicious Cases at Higher
Ratios:

o While most suspicious cases are
concentrated at very low ratios, there
are also noticeable (though smaller)
bars for suspicious cases (light
red/orange) at higher
Asset_Increase_Ratio values (e.g.,
around 2.5e-6 and 3.5e-6). These
higher ratio values appear to be almost
exclusively populated by suspicious
cases. The red curve (Not Suspicious)
quickly drops to near zero at these
higher ratios, while the light blue curve
(Suspicious) shows some density there.

3. Overlap and Potential for Discrimination:
o There's a significant overlap at the very

low end of the ratio, making it difficult to

202

distinguish cases solely based on very
small ratios.

o However, the presence of distinct, albeit
smaller, peaks for suspicious cases at
higher asset increase ratios suggests
that extremely disproportionate asset
increases (even if small in absolute
terms compared to total assets) could
be a strong indicator of suspicious
activity, as non-suspicious cases are
rarely found at these values.

In conclusion: The 'Asset_Increase_Ratio' is a
nuanced feature. While many politicians (both
suspicious and non-suspicious) have very small asset
increase ratios, higher values of this ratio appear to
be a strong indicator of suspicious activity. This
suggests that even a seemingly small ratio might be
significant if it's unusually high for the overall
population of politicians. The model can likely
leverage these distinct higher-ratio peaks to identify
suspicious cases.

203

This histogram is titled "Distribution of
Expenses_Donations_Ratio by Suspicious Status." It
illustrates the distribution of the
'Expenses_Donations_Ratio' for politicians,
separated and stacked by their 'Is Suspicious' status.

Here's a breakdown of the graph's components:

• Title: "Distribution of
Expenses_Donations_Ratio by Suspicious
Status": This indicates the chart's purpose: to
show how the ratio of campaign expenses to
donations received relates to a politician's
suspicious status.

• X-axis: 'Expenses_Donations_Ratio': This
axis represents the calculated ratio of
campaign expenses to donations received.
Values range from 0 to approximately 17.5. A
ratio of 1 would mean expenses equal

204

donations. A ratio less than 1 means donations
were higher than expenses. A ratio greater
than 1 means expenses were higher than
donations.

• Y-axis: 'Density': In a density histogram, the
y-axis represents the probability density. The
area under the curves (and within the bars) for
each group sums to 1, allowing for fair
comparison of distributions.

• Bars (Histograms): The bars are stacked to
show the density for each Is_Suspicious
category within specific ranges (bins) of the
expenses-donations ratio.

o Light Gray/Blue (Bottom part of
stacked bars) for Is Suspicious = 0
(Not Suspicious): These portions
represent the density of Not
Suspicious politicians.

o Light Red/Orange (Top part of
stacked bars) for Is Suspicious = 1
(Suspicious): These portions represent
the density of Suspicious politicians.

• KDE (Kernel Density Estimate) Lines: The
smooth curves overlaid on the histograms
represent the estimated probability density
functions for each Is_Suspicious group.

o Reddish Curve: Shows the density
distribution for Is Suspicious = 0 (Not
Suspicious politicians).

o Light Blue Curve: Shows the density
distribution for Is Suspicious = 1
(Suspicious politicians).

• Legend: 'Is Suspicious': Explains which
color/line corresponds to which status (Not
Suspicious or Suspicious).

Interpretation of the Plot:

205

This graph helps assess whether the
'Expenses_Donations_Ratio' is a useful feature for
distinguishing between suspicious and non-
suspicious politicians.

1. Concentration at Low Ratios:
o Both "Not Suspicious" (red/gray) and

"Suspicious" (light blue/orange)
politicians show a high density at lower
ratios, specifically between 0 and 2.5.
This means most politicians, regardless
of suspicious status, have campaign
expenses that are either less than or
slightly more than their donations.

2. Peaks for "Not Suspicious" at Lower
Ratios:

o The reddish KDE curve (Not Suspicious)
has a distinct peak at a very low ratio
(close to 0 or 1), and the gray bars
dominate this initial range. This
suggests that non-suspicious politicians
often have relatively low expenses
compared to their donations, or very
balanced.

3. Peaks for "Suspicious" at Slightly Higher &
Extreme Ratios:

o The light blue KDE curve (Suspicious)
also has a peak in the very low ratio
range (0 to 1), but it also shows
significant density at higher ratios
(e.g., around 2-3, and a smaller peak
around 16-17.5). The stacked bars also
show predominantly suspicious
cases (light red/orange) in the 4-5 range
and at the far right (around 16-17.5).
This implies that a very high ratio
(expenses significantly exceeding
donations) is more likely to be
associated with suspicious activity.

206

4. Overlap vs. Discrimination:
o There's considerable overlap at the

very low end of the ratio (0-2), making
it difficult to differentiate solely based on
this range.

o However, the presence of suspicious
cases at unusually high ratios (where
expenses are vastly greater than
donations), especially the distinct peak
near 17.5, suggests that these extreme
values could be strong indicators of
suspicious behavior. This might imply
undisclosed funding sources or misuse
of funds.

In conclusion: The 'Expenses_Donations_Ratio' can
be a discriminatory feature. While most politicians
have relatively balanced or low expense-to-donation
ratios, politicians with exceptionally high ratios
(where expenses far outweigh donations) are more
likely to be classified as suspicious. This suggests that
the model can pick up on discrepancies between
reported expenses and donations as a potential red
flag.

207

This image displays a Confusion Matrix of Political
Corruption Detection. It's a critical visualization for
understanding the performance of your classification
model in identifying suspicious politicians.

Here's a breakdown of the graph's components and
what they represent:

• Title: "Confusion Matrix of Political
Corruption Detection": Clearly states the
purpose and context of the matrix.

208

• Axes Labels:
o Y-axis: 'True Label': Represents the

actual status of the politicians in your
test dataset.

▪ 'True Not Suspicious':
Politicians who were genuinely
not suspicious.

▪ 'True Suspicious': Politicians
who were genuinely suspicious
(i.e., actual corruption cases).

o X-axis: 'Predicted Label': Represents
the status predicted by your Random
Forest model.

▪ 'Predicted Not Suspicious':
Politicians the model classified as
not suspicious.

▪ 'Predicted Suspicious':
Politicians the model classified as
suspicious.

• Cells and Values: Each cell at the intersection
of a "True Label" row and a "Predicted Label"
column contains a number, representing the
count of politicians falling into that category.
The colors (shades of blue) also reflect these
counts, with darker blue generally indicating
higher numbers.

o Top-Left Cell (7): True Negatives (TN)
▪ Interpretation: 7 politicians were

actually Not Suspicious, and
the model correctly predicted
them as Not Suspicious.

▪ This is a correct prediction.
o Top-Right Cell (0): False Positives

(FP)
▪ Interpretation: 0 politicians were

actually Not Suspicious, but the
model incorrectly predicted
them as Suspicious.

209

▪ This means the model had no
false alarms for non-suspicious
cases.

o Bottom-Left Cell (2): False Negatives
(FN)

▪ Interpretation: 2 politicians were
actually Suspicious, but the
model incorrectly predicted
them as Not Suspicious.

▪ This is a Type II error, often
referred to as a "missed
detection." In corruption
detection, these are the actual
corruption cases that the
model failed to identify. This is
usually the most critical type of
error in such systems.

o Bottom-Right Cell (0): True Positives
(TP)

▪ Interpretation: 0 politicians were
actually Suspicious, and the
model correctly predicted them
as Suspicious.

▪ This means the model did not
identify any of the true
corruption cases.

• Color Bar (Right Side): Although not fully
visible, it would indicate the scale for the color
intensity (darker blue for higher counts).

Summary of Model Performance based on this
Confusion Matrix:

• Total instances in the test set: 7 (TN) + 0
(FP) + 2 (FN) + 0 (TP) = 9 politicians.

• Actual Not Suspicious: 7 reports.
• Actual Suspicious: 2 reports. (This clearly

shows the class imbalance, with 'Not

210

Suspicious' being the majority class in this test
set).

• Model Accuracy: (TN + TP) / Total = (7 + 0) /
9 = 7 / 9 ≈ 0.7778 (77.78%).

o While the overall accuracy is high, this is
misleading.

• Key Strengths: The model is very good at
identifying non-suspicious cases (7 True
Negatives, 0 False Positives). It essentially
predicted almost everything as "Not
Suspicious."

• Key Weaknesses (Critical for a Corruption
Detection System):

o It produced zero True Positives (it
caught none of the actual suspicious
cases).

o It produced two False Negatives (it
missed both of the actual suspicious
cases).

In conclusion: This confusion matrix starkly reveals
a significant problem with the model's performance for
corruption detection. Despite a high overall accuracy,
the model effectively failed to detect any corruption
cases. It appears to have learned to simply predict the
majority class ("Not Suspicious") most of the time,
which is a common issue when training on imbalanced
datasets without proper handling (e.g., resampling
techniques). For a corruption detection system, this
performance is unacceptable as it means the system
would not flag any real instances of corruption.

The analysis involved building a Random Forest
model to detect suspicious politicians based on a
loaded dataset of 30 records.

Model Performance: The model achieved an overall
accuracy of approximately 77.8%. However, a

211

detailed look at the classification report and
confusion matrix reveals a critical failure: the
model completely failed to identify any of the truly
suspicious politicians (0 True Positives and 2 False
Negatives). This means that while it correctly
identified all non-suspicious cases, it missed every
instance of actual corruption in the test set. This
behavior is strongly indicative of the model simply
predicting the majority class ("Not Suspicious") due to
the significant class imbalance in the dataset,
where only 6 out of 30 politicians were labeled as
suspicious.

Feature Importance: Despite the model's poor
performance in identifying the minority class, the
feature importance chart provided insights into
which attributes the model considered relevant.
Campaign Expenses was the most important
feature, followed by Position_Encoded,
Asset_Increase_Ratio, and
Last_Year_Asset_Increase_Percentage. This
suggests these financial and positional factors are
crucial indicators.

Visualizations' Insights: The "Distribution of
Suspicious vs. Non-Suspicious Cases" bar chart
vividly illustrated the severe class imbalance,
confirming the challenge for the model. Histograms for
features like Last_Year_Asset_Increase_Percentage,
Campaign_Expenses, Previous_Complaints,
Asset_Increase_Ratio, and
Expenses_Donations_Ratio showed potential
discriminative patterns, with suspicious cases often
concentrated at higher asset increases/ratios, lower
campaign expenses, or a higher number of previous
complaints. The Confusion Matrix plot visually
confirmed the model's inability to predict any
suspicious cases, with all actual suspicious instances
being misclassified as non-suspicious.

212

Conclusion: While the data loading and feature
engineering were successful, the Random Forest
model, in its current form, is ineffective for political
corruption detection due to its inability to learn from
and predict the minority 'Suspicious' class. Addressing
the class imbalance through techniques like
oversampling or undersampling is crucial to build a
functional detection system.

213

Chapter 11. Conclusions

Throughout this article, we've deeply explored the
problem of fraud and corruption in contemporary
society, recognizing its devastating economic and
social impact.34 From defining these scourges to
detailing their various manifestations in key sectors
like finance, e-commerce, public administration,
healthcare, construction, and politics, we've
established the urgency of finding effective tools to
combat them.35

We randomly generated data for the creation of three
algorithms, each with its corresponding output
explanation (in some cases accompanied by graphs).
36However, the correct application of these algorithms
fundamentally depends on the construction of the
datasets. This book seeks to democratize and
disseminate this tool, reiterating that the key lies in the
careful preparation of datasets, with special attention
to the specific operations of situations like fraud,
corruption, expense report control, and credit card
management, among others.

After this journey, it's clear that algorithms and
artificial intelligence represent a transformative tool

34 Albrecht, W. Steve, Chad O. Albrecht, Conan C. Albrecht, and
Keith R. Howe. Fraud Examination. Cengage Learning, 2012. (

35 Aidt, Toke S. "Corruption and Economic Growth: A Review of the
Evidence." European Journal of Political Economy, Vol. 20, No. 2 (June
2004), pp. 401-424.

36 Berry, Michael J. A., and Gordon S. Linoff. Data Mining
Techniques: For Marketing, Sales, and Customer Relationship
Management. John Wiley & Sons, Inc., 2004.

214

in the fight against fraud and corruption. 37 Their ability
to analyze large volumes of data quickly and
accurately, identify complex patterns, and predict
suspicious behaviors offers unprecedented potential
to strengthen integrity and trust in our societies.

The potential of algorithms is evident in their capacity
to:

• Improve Efficiency and Accuracy: By
automating the detection of illicit activities and
reducing reliance on manual methods, which
are often slow and error-prone.

• Detect Hidden Patterns: By identifying
anomalies and relationships that might go
unnoticed by the human eye.

• Provide Real-Time Information: Allowing for
a quicker and more effective response to
emerging threats.

• Increase Transparency and Accountability:
By facilitating the analysis of public data and
the identification of irregularities.

• Deter Illicit Activities: By increasing the
probability of detection and sanction.

However, it's crucial to approach the use of algorithms
with caution and responsibility. We acknowledge
the inherent challenges and limitations, such as the
need to mitigate algorithmic biases, protect data
privacy, and manage resistance to change.
Successful implementation requires an ethical,
transparent, and collaborative approach.

The future of the fight against fraud and corruption
doesn't solely lie in technology, but algorithms will play

37 Bishop, Christopher M. Pattern Recognition and Machine Learning.
Springer, 2006.

215

an increasingly central and crucial role. The synergy
between human ingenuity, ethics, and the power of
artificial intelligence has the potential to build more
just, transparent, and resilient societies.

This article aims to demonstrate that controlling fraud
and corruption through the use of Machine Learning
code is an achievable goal for individuals, companies,
and the state, given the current technologies and
transaction data—political, public, and/or private—at
our disposal. The key lies in ensuring that data is
available, complete, accessible, and unbiased.
These conditions, combined with technological tools,
are sufficient to implement effective control systems.

For each algorithm, we explore the generation of web
pages to visualize the results. From this, we can
create interactive reports on the analysis of fraud and
corruption cases.

It is imperative that governments, organizations, and
civil society invest in the responsible development and
implementation of these technologies, fostering
collaboration, establishing adequate regulatory
frameworks, and promoting a culture of transparency
and accountability. Only then can we fully harness the
potential of algorithms to protect our systems and
strengthen trust in an increasingly complex and
digitized world.38

38 Floridi, Luciano. "The Ethics of Information." Philosophy &
Technology, Vol. 21, No. 4 (December 2008), pp. 439-455.

216

Acknowledgements: I am grateful to the

University of the Argentine Social Museum -

Argentina, my University.

217

Chapter 12. Glossary of Terms

This glossary aims to provide clear and concise
definitions of the key terms used throughout the book.

● Algorithm: A finite and ordered set of well-defined
and unambiguous instructions or rules that are
followed step-by-step to solve a specific problem or
perform a task. Algorithms are the foundation of
computation. Example: A cooking recipe is an
algorithm for preparing a dish.

● Artificial Intelligence (AI): A field of computer
science that focuses on the creation of systems and
programs capable of simulating human intelligence
processes. This includes the ability to reason, learn,
solve problems, perceive the environment,
understand language, and make decisions. Example:
Virtual assistants like Siri or Alexa use AI.

● Machine Learning (ML): A branch of AI that
focuses on the development of algorithms that allow
computers to learn from data without being explicitly
programmed. ML algorithms improve their
performance through experience. Example: Email
spam filters use ML to identify unwanted emails.

● Supervised Learning: A type of machine learning
where algorithms learn from labeled data. Labeled
data includes both the input and the desired output,
allowing the algorithm to learn to map inputs to
outputs. Example: Training an algorithm to classify
images of cats and dogs, where each image is labeled
as "cat" or "dog."

● Unsupervised Learning: A type of machine
learning where algorithms learn from unlabeled data.
The algorithm seeks hidden patterns, structures, or

218

groupings in the data without the guidance of a
predefined output. Example: Grouping customers into
different market segments based on their purchasing
behavior.

● Reinforcement Learning: A type of machine
learning where an agent learns to make decisions by
interacting with an environment. The agent receives
rewards or penalties for its actions, thus learning to
maximize rewards over time. Example: Training a
robot to navigate a maze.

● Fraud: An intentional act of deception or
misrepresentation designed to gain financial or other
benefit at the expense of another person or entity. It
involves a breach of trust. Example: Credit card fraud,
tax fraud.

● Corruption: The abuse of public or private power to
obtain personal or group benefit. It involves the
misuse of authority for dishonest purposes. Example:
Bribery of public officials, embezzlement of funds.

● Algorithmic Bias: A systematic tendency in an
algorithm that causes it to produce unfair,
discriminatory, or disproportionate results towards
certain groups or individuals. Algorithmic bias can
arise from biased training data or the algorithm's
design. Example: A hiring algorithm that favors men
over women due to biased historical hiring data.

● Open Data: Data, especially government
information, that is available for anyone to access,
use, and share, without restrictions of copyright,
patents, or other control mechanisms. Example: Data
on government budgets, crime statistics.

219

● Natural Language Processing (NLP): A branch of
AI that deals with the interaction between computers
and human language. NLP allows computers to
understand, interpret, and generate human language
in the form of text or speech. Example: Machine
translation, sentiment analysis on social media.

● Network Analysis: A set of techniques and
methods for studying the relationships and
connections between entities (people, organizations,
concepts, etc.). Network analysis helps to understand
the structure and dynamics of complex systems.
Example: Analyzing collusion networks in public
procurement.

● Anomaly Detection: The process of identifying
data points, events, or observations that deviate
significantly from normal or expected behavior.
Anomalies can indicate unusual events, errors, or
fraud. Example: Detecting fraudulent bank
transactions that deviate from a customer's usual
spending pattern.

● Explainable AI (XAI): A field of AI that focuses on
developing techniques and methods to make AI
models and decisions more transparent,
understandable, and interpretable for humans. XAI
seeks to increase trust and accountability in AI
systems. Example: Providing clear and
understandable reasons for an AI model's decision to
deny a loan.

220

● Libraries Used in Data Analysis and Additional
Resources

● Libraries:

Faker: https://pypi.org/project/Faker/

Pandas:https://pandas.pydata.org/

Random:
https://docs.python.org/3/library/random.html }

Numpy:https://numpy.org/}

Datetime:
https://docs.python.org/3/library/datetime.html

Matplotlib: https://matplotlib.org/

}Seaborn: https://seaborn.pydata.org/

Collections:
https://docs.python.org/3/library/collections.html

}Scikit-learn: https://scikit-learn.org/

Warnings:
https://docs.python.org/3/library/warnings.html

Nltk: https://www.nltk.org/

Re: https://docs.python.org/3/library/re.html

Imblearn: https://imbalanced-learn.org/stable/

Ø Additional Resources

https://pypi.org/project/Faker/
https://pandas.pydata.org/
https://docs.python.org/3/library/random.html
https://numpy.org/
https://docs.python.org/3/library/datetime.html
https://matplotlib.org/
https://seaborn.pydata.org/
https://docs.python.org/3/library/collections.html
https://scikit-learn.org/
https://docs.python.org/3/library/warnings.html
https://www.nltk.org/
https://docs.python.org/3/library/re.html
https://imbalanced-learn.org/stable/

221

● Online Learning Platforms: * Coursera: Offers
courses and specializations on artificial intelligence,
machine learning, data science, and AI ethics, taught
by universities and organizations worldwide. It is
recommended to look for specific courses such as
"Machine Learning" by Andrew Ng or "AI for
Everyone." https://www.coursera.org/ * edX: Similar
to Coursera, it offers a wide range of courses on AI,
data science, and related topics. It is recommended to
look for courses from universities like MIT or Harvard.
https://www.edx.org/ * Udacity: Offers "Nanodegrees"
and practical courses on data science, machine
learning, and AI development. www.udacity.com

● Organizations and Agencies: * Transparency
International (www.transparency.org) * United Nations
Office on Drugs and Crime (UNODC)
(www.unodc.org) * Financial Crimes Enforcement
Network (FinCEN) (www.fincen.gov) * Open
Government Partnership (OGP)
(www.opengovpartnership.org) * Association of
Certified Fraud Examiners (ACFE) (www.acfe.com)

● Specialized Publications and Websites: *
Academic journals on AI, data science, cybersecurity,
governance, and law. * Blogs and websites of experts
in AI, technology ethics, and anti-corruption. *
Research repositories and academic databases (e.g.,
arXiv: https://arxiv.org/, Google Scholar:
https://scholar.google.com/)

● Tools and Software: * Listing of relevant data
analysis and AI software and platforms for fraud and
corruption detection (e.g., Python, R, data
visualization tools).

● Programming Languages: * Python: Consult the
official Python documentation (python.org) to learn

https://www.coursera.org/
https://www.edx.org/
https://www.udacity.com/
https://www.acfe.com/
https://arxiv.org/
https://scholar.google.com/

222

about the language and its relevant libraries for data
analysis (NumPy, Pandas) and machine learning
(scikit-learn, TensorFlow, Keras).
https://www.python.org/ * R: Review the official R
documentation (r-project.org) to learn about the
language and its packages for statistical analysis and
machine learning. https://cran.rstudio.com/

● Data Analysis Platforms: * Jupyter Notebook:
Consult the official documentation to learn how to use
this interactive tool for data analysis and programming
in Python and R.
https://www.anaconda.com/download * Google
Colab: Review the documentation to learn how to use
this free, cloud-based platform to run Python code.
https://colab.research.google.com/

● Machine Learning Libraries: * scikit-learn:
Consult the official documentation (scikit-learn.org) to
learn about the various machine learning techniques
implemented in this Python library. https://scikit-
learn.org/stable/ * TensorFlow: Review the official
documentation (tensorflow.org) to learn about this
open-source machine learning library.
https://www.tensorflow.org/?hl=en * Keras: Consult
the official documentation (keras.io) to learn about this
high-level API for neural networks. https://keras.io/

Reader Access to Book Material:

Ø For better management of Drive, Colaboratory, and
files, the reader is suggested to have a free Gmail
account. Ø For readers unfamiliar with GitHub code
repositories, by accessing the author's drive and
hovering the mouse over the file they want to open,
they can open it with a right-click.

https://www.python.org/
https://cran.rstudio.com/
https://www.anaconda.com/download
https://colab.research.google.com/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://www.tensorflow.org/?hl=en
https://keras.io/

223

• Author's Repository:
• https://github.com/Viny2030/algorithms_fraud_

corruption

https://github.com/Viny2030/algorithms_fraud_corruption
https://github.com/Viny2030/algorithms_fraud_corruption

224

Bibliography

• Aarvik, P. (2019). Artificial Intelligence – a promising
anti-corruption tool in development settings? U4 Anti-
Corruption Resource Centre.

• Acción Ciudadana. (2022). Acción Ciudadana presenta
informe de monitoreo a la probidad en la función pública:
https://accion-ciudadana.org/noticia-accion-ciudadana-
presenta-informe-de-monitoreo-sobre-probidad-en-la-
funcion-publica/

• Aggarwal, C. C. (2015). Data mining: The textbook. Springer.

• Aidt, T. S. (2004). Corruption and economic growth: A review
of the evidence. European Journal of Political Economy, 20(2),
401–424.

• Albrecht, W. S., Albrecht, C. O., Albrecht, C. C., & Howe, K.
R. (2012). Fraud examination. Cengage Learning.

• Anand, V., & Ashforth, B. E. (2003). The normalization of
corruption in organizations. Research in Organizational
Behavior, 25, 1–52.

• Ashforth, B. E., & Anand, V. (2003). The
normalization of corruption in organizations. Research
in Organizational Behavior, 25, 1-52.

• Bandura, A. (1999). Moral disengagement in the perpetration
of inhumanities. Personality and Social Psychology Review,
3(3), 193–209.

• Bandura, A. (1999). Social cognitive theory of
personality. In L. A. Pervin & O. P. John
(Eds.), Handbook of personality: Theory and
research (2nd ed., pp. 154-196). Guilford Press.

• Bardhan, P. (1997). Corruption and development: A review of
issues. Journal of Economic Literature, 35(3), 1320–1346.

• Bardhan, P. (2010). The political economy of development.
MIT Press.

• Barocas, S., & Selbst, A. D. (2016). Big data's disparate
impact. California Law Review, 104(6), 671–732.

• Benkler, Y. (2006). The wealth of networks: How social
production transforms markets and freedom. Yale University
Press.

• Bergoglio, Jorge Mario sj, Cardenal. (2013). Corrupcion y
Pecado. Editorial Claretiana.

https://accion-ciudadana.org/noticia-accion-ciudadana-presenta-informe-de-monitoreo-sobre-probidad-en-la-funcion-publica/
https://accion-ciudadana.org/noticia-accion-ciudadana-presenta-informe-de-monitoreo-sobre-probidad-en-la-funcion-publica/
https://accion-ciudadana.org/noticia-accion-ciudadana-presenta-informe-de-monitoreo-sobre-probidad-en-la-funcion-publica/

225

• Berry, M. J. A., & Linoff, G. S. (2004). Data mining techniques:
For marketing, sales, and customer relationship
management. John Wiley & Sons.

• Bilbao. (24 de marzo de 2025). Euskadi publica su
Registro de Algoritmos con 14 sistemas de IA en uso.
Cadena SER:
https://cadenaser.com/euskadi/2025/03/24/euskadi-
publica-su-registro-de-algoritmos-con-14-sistemas-de-
ia-en-uso-radio-bilbao/

• BioCatch. (2021). Abordar el impacto emocional del
fraude financiero.:
https://www.biocatch.com/es/blog/abordar-el-impacto-
emocional-del-fraude-financiero

• Bishop, C. M. (2006). Pattern recognition and machine
learning. Springer.

• Bologna, G. J., & Lindquist, R. J. (2008). The accountant's
handbook of fraud and forensic accounting. John Wiley &
Sons.

• Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection:
A review. Statistical Science, 17(3), 235–255.

• Bostrom, N. (2014). Superintelligence: Paths, dangers,
strategies. Oxford University Press.

• Brause, R., Langsdorf, T., & Heppner, F. (1996). Neural
networks for credit card fraud detection. In Proceedings of
the 1996 International Conference on Neural Networks (Vol.
3, pp. 2280–2285).

• Breiman, L. (2001). Statistical modeling: The two cultures.
Statistical Science, 16(3), 199–231.

• Brynjolfsson, E., & McAfee, A. (2014). The second machine
age: Work, progress, and prosperity in a time of brilliant
technologies. W. W. Norton & Company.

• Brynjolfsson, E., & McAfee, A. (2017, July-August). The
business of artificial intelligence. Harvard Business Review.

• Cadenaser. (2025). Inculcar valores morales y éticos a
los sistemas de IA, el gran desafío:
https://cadenaser.com/cmadrid/2024/12/17/inculcar-
valores-morales-y-eticos-a-los-sistemas-de-ia-el-gran-
desafio-ser-madrid-sur/

• Corporación Universitaria Remington. (2018).
Memorias: Tercer Congreso Internacional: Crimen
económico y fraude financiero y contable. Fondo
Editorial Remington.

https://cadenaser.com/euskadi/2025/03/24/euskadi-publica-su-registro-de-algoritmos-con-14-sistemas-de-ia-en-uso-radio-bilbao/
https://cadenaser.com/euskadi/2025/03/24/euskadi-publica-su-registro-de-algoritmos-con-14-sistemas-de-ia-en-uso-radio-bilbao/
https://cadenaser.com/euskadi/2025/03/24/euskadi-publica-su-registro-de-algoritmos-con-14-sistemas-de-ia-en-uso-radio-bilbao/
https://www.biocatch.com/es/blog/abordar-el-impacto-emocional-del-fraude-financiero
https://www.biocatch.com/es/blog/abordar-el-impacto-emocional-del-fraude-financiero
https://cadenaser.com/cmadrid/2024/12/17/inculcar-valores-morales-y-eticos-a-los-sistemas-de-ia-el-gran-desafio-ser-madrid-sur/
https://cadenaser.com/cmadrid/2024/12/17/inculcar-valores-morales-y-eticos-a-los-sistemas-de-ia-el-gran-desafio-ser-madrid-sur/
https://cadenaser.com/cmadrid/2024/12/17/inculcar-valores-morales-y-eticos-a-los-sistemas-de-ia-el-gran-desafio-ser-madrid-sur/

226

• Cressey, D. R. (1953). Other people's money: A

study in the social psychology of embezzlement. Free
Press.

• Cressey, D. R. (1953). Other people's money: A study of the
social psychology of embezzlement. Free Press.

• Davenport, T. H., & Harris, J. G. (2007). Competing on
analytics: The new science of winning. Harvard Business
Press.

• De Sousa Luis ,Felippe Clemente,Julia
Maria Gracia de Castro
(2024).Microeconomics of corruption
based on behavioral economics: testing
Monteverde’s approach to Iberian
countries

• Dwork, C., & Mulligan, D. K. (2019). Fairness in machine
learning. In Proceedings of the ACM Conference on Fairness,
Accountability, and Transparency (pp. 43–52).

• Fawcett, T. (2011). Fraud detection. In Encyclopedia of
machine learning (pp. 385–388). Springer.

• Fawcett, T., & Provost, F. (2013). Data science for business:
What you need to know about data mining and data-analytic
thinking. O'Reilly Media.

• Financial Crime Academy. (4 de abril de 2025).
Protección Contra El Blanqueo De Capitales Con
Algoritmos De IA:
https://financialcrimeacademy.org/es/proteccion-de-
siguiente-nivel-proteccion-contra-el-blanqueo-de-
capitales-con-algoritmos-de-ia/

• Floridi, L. (2008). The ethics of information. Philosophy &
Technology, 21(4), 439–455.

• Floridi, L. (2014). The fourth revolution: How the infosphere is
reshaping human reality. Oxford University Press.

• Gaceta Sanitaria. (2020). Fraudes financieros, salud y
calidad de vida: un estudio cualitativo:
https://www.gacetasanitaria.org/es-fraudes-financieros-
salud-calidad-vida-articulo-S0213911119302742

• Galvis, J., Marín, J., & Garnica, J. (2021). Guía para la
identificación de riesgos de corrupción en contratación
pública, utilizando la ciencia de datos. Red
Interamericana de compras gubernamentales.

• Gantz, J., & Reinsel, D. (2012). The digital universe in 2020:
Big data, bigger digital shadows, and biggest growth in the far
east. IDC iView, 1, 1–16.

https://financialcrimeacademy.org/es/proteccion-de-siguiente-nivel-proteccion-contra-el-blanqueo-de-capitales-con-algoritmos-de-ia/
https://financialcrimeacademy.org/es/proteccion-de-siguiente-nivel-proteccion-contra-el-blanqueo-de-capitales-con-algoritmos-de-ia/
https://financialcrimeacademy.org/es/proteccion-de-siguiente-nivel-proteccion-contra-el-blanqueo-de-capitales-con-algoritmos-de-ia/
https://www.gacetasanitaria.org/es-fraudes-financieros-salud-calidad-vida-articulo-S0213911119302742
https://www.gacetasanitaria.org/es-fraudes-financieros-salud-calidad-vida-articulo-S0213911119302742

227

• Gastón, P., & Cruz, J. (2023). ¿Qué funciona para
generar impacto en el control de la corrupción? El rol de
la inteligencia artificial.

• Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep
learning. MIT Press.

• Grimmelikhuijsen, S., & Bekkers, V. (2014). Open
government data: A systematic review of the benefits and
risks. Information Polity, 19(3–4), 233–253.

• Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of
data mining. MIT Press.

• Harari, Y. N. (2017). Homo deus: A brief history of tomorrow.
Harper.

• Hare, R. D. (1993). Without conscience: The disturbing world
of the psychopaths among us. Pocket Books.

• Hare, R. D. (1993). Without conscience: The disturbing
world of the psychopaths among us. Pocket Books.

• Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements
of statistical learning: Data mining, inference, and prediction
(2nd ed.). Springer.

• Hegg, K., & Buvik, A. (2010). Corruption in public
procurement: A review of the literature. Journal of Public
Procurement, 10(3), 317–347.

• HuffPost. (2023). Una jubilada gana el juicio a su banco
tras sufrir una estafa bancaria de 10.000 euros:
https://www.gacetasanitaria.org/es-fraudes-financieros-
salud-calidad-vida-articulo-S0213911119302742

• Hussmann, K. (2020). Corrupción en el sector salud.
Recomendaciones prácticas para donantes (U4 Issue).

• IBM. (4 de abril de 2025). ¿Qué es la detección de
fraude?: https://www.ibm.com/mx-es/topics/fraud-
detection

• James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An
introduction to statistical learning: With applications in R.
Springer.

• Janssen, M., & Zuiderwijk, A. (2013). Government data as an
open innovation resource: A systematic literature review.
Government Information Quarterly, 30(1), 1–13.

• Johnston, M. (2005). Syndromes of corruption: Wealth,
power, democracy. Cambridge University Press.

• Kelleher, J. D., & Mac Namee, B. (2015). Data science. MIT
Press.

• Kenny, C. (2006). The political economy of corruption: A
survey. The Hague Journal of Development, 1(1), 1–28.

https://www.gacetasanitaria.org/es-fraudes-financieros-salud-calidad-vida-articulo-S0213911119302742
https://www.gacetasanitaria.org/es-fraudes-financieros-salud-calidad-vida-articulo-S0213911119302742
https://www.ibm.com/mx-es/topics/fraud-detection
https://www.ibm.com/mx-es/topics/fraud-detection

228

• Klitgaard, R. (1988). Controlling corruption. University
of California Press.

• Kurzweil, R. (2005). The singularity is near: When humans
transcend biology. Viking.

• Levi, M. (2012). The Oxford handbook of white-collar crime.
Oxford University Press.

• Levi, M., & Williams, P. (2004). Combating large-firm
financial crime. Criminology & Criminal Justice, 4(2), 131–155.

• Lewis, M. W. (2006). Corruption in the health sector: A
conceptual framework and empirical evidence. Center for
Global Development Working Paper, 101.

• Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., Marrs,
A., ... & Ngadi, M. (2017). Artificial intelligence: The next
digital frontier? McKinsey Global Institute.

• Mauro, P. (1995). Corruption and growth. The Quarterly
Journal of Economics, 110(3), 681–712.

• McCombs, M. E., & Shaw, D. L. (1972). The agenda-setting
function of mass media. Public Opinion Quarterly, 36(2), 176–
187.

• McKinsey Global Institute. (2023, June). The future of work:
What will the world look like in 2030?

• Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., &
Galstyan, A. (2021). A survey on bias and fairness in machine
learning. ACM Computing Surveys (CSUR), 54(6), 1–35.

• Microblink. (4 de abril de 2025). Detección y
prevención del fraude en el sector bancario:
https://microblink.com/es/resources/blog/fraud-
detection-and-prevention-in-the-banking-industry

• Mitchell, M. (2019). Artificial intelligence: A guide for thinking
humans. Oxford University Press.

• Mitchell, T. M. (1997). Machine learning. McGraw-Hill.

• Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi,
L. (2016). The ethics of algorithms: Mapping the debate. Big
Data & Society, 3(2), 1–21.

• Monteverde, V. H. (2015). Economy of corruption. EDICON.

• Monteverde, V. H. (2016). Corruption, transparency and
prevention in economic development. EDICON.

• Monteverde, V. H. (2019). Corruptive economy. Spanish
Academic Editorial.

• Monteverde, V. H. (2019). Impact of corruption on fiscal
variables of a country. Spanish Academic Editorial.

https://microblink.com/es/resources/blog/fraud-detection-and-prevention-in-the-banking-industry
https://microblink.com/es/resources/blog/fraud-detection-and-prevention-in-the-banking-industry

229

• Monteverde, V. H. (2021). National anti-corruption-
provincial and municipal system-proposals and analysis.
EDICON.

• Monteverde, V. H. (2022). Corruption and its impact on the
economy. Global Academy.

• Monteverde, V. H. (2022). Econometria da corrupção:
Impacto da corrupção no desenvolvimento humano da
Argentina (1ª ed.). Edições Nosso Conhecimento.

• Monteverde, V. H. (2022). Econometría de la corrupción:
Impacto de la corrupción en el desarrollo humano de
Argentina (1ª ed.). Ediciones Nuestro Conocimiento.

• Monteverde, V. H. (2022). Econometria della corruzione:
Impatto della corruzione sullo sviluppo umano dell'Argentina
(1ª ed.). Edizioni Sapienza.

• Monteverde, V. H. (2022). Econometric of corruption –Impact
of Corruption on the human development of Argentina.
Lambert Academic Publishing.

• Monteverde, V. H. (2022). Économétrie de la corruption:
Impact de la corruption sur le développement humain en
Argentine (1ª ed.). Editions Notre Savoir.

• Monteverde, V. H. (2022). Ökonometrie der Korruption:
Auswirkungen der Korruption auf die menschliche
Entwicklung in Argentinien (1ª ed.). Verlag Unser Wissen.

• Monteverde, V. H. (2024). Der Einfluss von Korruption auf die
fiskalischen variable einess Landes-Systematic Korruption in
Argentinien 2003-2015. Unser Wissen.

• Monteverde, V. H. (2024). Impact of Corruption on a
Country’s Fiscal Variables- Systematic corruption in Argentina
2003-2015. Our Knowledge Publishing.

• Monteverde, V. H. (2024). L’ impact de la Corruption Sur les
variables fiscales d’un pays- Corruption systematique en
Argentine 2003-2015. Editions Notre Savoir.

• Monteverde, V. H. (2024). L’ impatto de la Corrupzione sulle
variabili fiscali di un Paese- Corruzione Sistematica in
Argentina 2003-2015. Edizione Sapienza.

• Monteverde, V. H. (2024). O Impacto da Corrupção nas
Variáveis Fiscais de um País: Corrupção Sistemática na
Argentina 2003-2015. Edições Nosso Conhecimento.

• Monteverde, V. H. (2024). Sistematização da Transparência:
Ferramentas anticorrupção para organizações. Edições Nosso
Conhecimento.

• Monteverde, V. H. (2024). Sistematizzazione della
trasparenza. Edizioni Sapienza.

230

• Monteverde, V. H. (2024). Systématisation de la
transparence. Editions Notre Savoir.

• Monteverde, V. H. (2024). Systematisierung der Transparenz:
Korruptionsbekämpfungsinstrumente für Organisationen.
Verlag Unser Wissen.

• Monteverde, V. H. (2024). Systematization of Transparency,
Anticorruption Tools for Organizations. Lambert Academic
Publishing.

• Monteverde, V. H. (2024). Влияние коррупции на
налоговые переменные страны. Sciencia Scripts.

• Monteverde, V. H. (2024). Эконометриякоррупции.
Sciencia Scripts.

• Mungiu-Pippidi, A. (2005). The quest for good governance:
How to fight corruption. Journal of Democracy, 16(4), 119–
132.

• Ng, A. (n.d.). Machine learning yearning. Retrieved from
[Insert URL if known]

• Noble, S. U. (2018). Algorithms of oppression: How search
engines reinforce racism. New York University Press.

• O'Neil, C. (2016). Weapons of math destruction: How big data
increases inequality and threatens democracy. Crown.

• OpenText. (6 de abril de 2025). ¿Qué son los análisis
de comportamiento?: https://www.opentext.com/what-
is/behavioral-analytics

• Paulhus, D. L., & Williams, K. M. (2002). The dark triad of
personality: Narcissism, Machiavellianism, and psychopathy.
Journal of Research in Personality, 36(6), 556–563.

• Paulhus, D. L., & Williams, K. M. (2002). The dark
triad of personality: Narcissism, Machiavellianism, and
psychopathy. Journal of Research in Personality, 36(6),
556-563.

• Phua, C., Lee, V., Smith, K., & Gayler, R. (2014). A
comprehensive survey of data mining-based fraud detection
research. AI & Society, 29(4), 559–586.

• Pirani. (2025). Cómo prevenir y gestionar el fraude
interno: https://www.piranirisk.com/es/blog/prevenir-y-
gestionar-fraude-interno

• PRONACOM. (2019). Plan de acción para prevenir,
detectar y remediar el fraude y la corrupción en la
implementación del programa umbral por PRONACOM.

• Provost, F., & Fawcett, T. (2013). Data science for business:
What you need to know about data mining and data-analytic
thinking. O'Reilly Media.

https://www.opentext.com/what-is/behavioral-analytics
https://www.opentext.com/what-is/behavioral-analytics
https://www.piranirisk.com/es/blog/prevenir-y-gestionar-fraude-interno
https://www.piranirisk.com/es/blog/prevenir-y-gestionar-fraude-interno

231

• Rodríguez-Olivari, D. (2025). La lucha anticorrupción
desde el nuevo paradigma tecnológico:
https://dialogopolitico.org/edicion-especial-2025-
democracia-artificial/la-lucha-anticorrupcion-desde-el-
nuevo-paradigma-tecnologico/

• Rose-Ackerman, S. (1998). The political economy of
corruption. The World Bank Research Observer, 13(1), 1–21.

• Rose-Ackerman, S. (1999). Corruption and government:
Causes, consequences, and reform. Cambridge University
Press.

• Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A
modern approach (4th ed.). Pearson.

• Sahin, Y., & Duman, E. (2012). A survey on fraud detection in
e-commerce. International Journal of Computer Science
Issues (IJCSI), 9(1), 1–10.

• Shleifer, A., & Vishny, R. W. (1998). The grabbing hand:
Government pathologies and their cures. Harvard University
Press.

• Singleton, T. W., Singleton, A. J., & Albrecht, W. S. (2010).
Fraud auditing and forensic accounting. John Wiley & Sons.

• Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction
to data mining. Pearson.

• Tanzi, V., & Davoodi, H. (1997). Corruption, public
investment, and growth. IMF Working Paper, WP/97/139.

• Tapscott, D., & Williams, A. D. (2012). Radical transparency:
Reinventing governance in the age of information. McClelland
& Stewart.

• Transparency International. (2023). Global corruption report:
Infrastructure. Routledge.

• Transparency International. (2024). Global corruption report:
Health. Routledge.

• Transparency International. (Annual). Global corruption
report.

• Treisman, D. (1993). The causes of corruption: A cross-
national study. World Development, 21(8), 1011–1031.

• Tukey, J. W. (1962). The future of data analysis. Annals
of Mathematical Statistics, 33(1), 1–67.

• Wardle, C., & Derakhshan, H. (2017). Information disorder:
Toward an interdisciplinary framework for research and
policymaking. Council of Europe report DGI(2017)09.

• Wells, J. T. (2014). Principles of fraud examination. John Wiley
& Sons.

https://dialogopolitico.org/edicion-especial-2025-democracia-artificial/la-lucha-anticorrupcion-desde-el-nuevo-paradigma-tecnologico/
https://dialogopolitico.org/edicion-especial-2025-democracia-artificial/la-lucha-anticorrupcion-desde-el-nuevo-paradigma-tecnologico/
https://dialogopolitico.org/edicion-especial-2025-democracia-artificial/la-lucha-anticorrupcion-desde-el-nuevo-paradigma-tecnologico/

232

• Zimbardo, P. (2007). The Lucifer effect: Understanding how
good people turn evil. Random House.

• Zuboff, S. (2019). The age of surveillance capitalism: The fight
for a human future at the new frontier of power. PublicAffairs.

• Zuiderwijk, A., & Janssen, M. (2013). Open data research:
State of the art and future challenges. Government
Information Quarterly, 30(Supplement 1), S14–S21.

	Yeni Microsoft Word Belgesi (9)
	Published by
	Algorithms against Fraud and Corruption (1)
	Yeni Microsoft Word Belgesi (8)

